DIESEL RANGE ORGANICS DATA GSA - SLOP JOB# 248531 | Laboratory Chronicle | | |------------------------------|-----| | Chain of Custody | 9 | | Case Narrative | 16 | | Quality Control Summary | 18 | | Sample Data Package | 24 | | Standards Data Package | 64 | | Ouality Control Data Package | 115 | ### STL Chicago is part of Severn Trent Laboratories, Inc. SAMPLE INFORMATION Date: 09/21/2006 Job Number:: 248531 Customer...: SCS Engineers, Inc. Attn....: David Brewer Project Number.....: 20006654 Customer Project ID...: GSA - SLOP Project Description...: GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 248531-1 | SB1015-3 | Soil | 09/05/2006 | 07:30 | 09/07/2006 | 10:00 | | 248531-2 | SB1025-5 | Soil | 09/05/2006 | 07:55 | 09/07/2006 | 10:00 | | 248531-3 | SB1035-4 | Soil | 09/05/2006 | 08:15 | 09/07/2006 | 10:00 | | 248531-4 | SB1045-2 | Soil | 09/05/2006 | 08:30 | 09/07/2006 | 10:00 | | 248531-5 | SB1055~3 | Soil | 09/05/2006 | 09:15 | 09/07/2006 | 10:00 | | 248531-6 | sB1095-5 | Soil | 09/05/2006 | 12:00 | 09/07/2006 | 10:00 | | 248531-7 | sB1095-10 | Soil | 09/05/2006 | 12:30 | 09/07/2006 | 10:00 | | 248531-8 | SB1105-1 | Soil | 09/05/2006 | 14:15 | 09/07/2006 | 10:00 | | 248531-9 | SB1105-4 | Soil | 09/05/2006 | 14:40 | 09/07/2006 | 10:00 | | 248531-10 | SB1115-1 | Soil | 09/05/2006 | 14:55 | 09/07/2006 | 10:00 | | 248531-11 | SB1115-5 | Soil | 09/05/2006 | 15:20 | 09/07/2006 | 10:00 | | 248531-12 | sB1125-1 | Soil | 09/05/2006 | 15:40 | 09/07/2006 | 10:00 | | 248531-13 | SB1155-2 | Soil | 09/06/2006 | 08:00 | 09/07/2006 | 10:00 | | 248531-14 | SB1155-3 | Soil | 09/06/2006 | 08:10 | 09/07/2006 | 10:00 | | 248531-15 | SB1165-4 | Soil | 09/06/2006 | 11:00 | 09/07/2006 | 10:00 | | 248531-16 | SB1175-4 | Soil | 09/06/2006 | 11:45 | 09/07/2006 | 10:00 | | 248531-17 | SB1185-2 | Soil | 09/06/2006 | 13:10 | 09/07/2006 | 10:00 | | 248531-18 | SB1185-5 | Soil | 09/06/2006 | 13:25 | 09/07/2006 | 10:00 | | 248531-19 | SB1195-3 | Soil | 09/06/2006 | 14:05 | 09/07/2006 | 10:00 | | 248531-20 | SB1195-4 | Soil | 09/06/2006 | 14:25 | 09/07/2006 | 10:00 | | 248531-21 | SB1215-3 | Soil | 09/06/2006 | 15:10 | 09/07/2006 | 10:00 | | 248531-22 | sB1225-2 | Soil | 09/06/2006 | 16:20 | 09/07/2006 | 10:00 | | 248531-23 | SB1225-4 | Soil | 09/06/2006 | 16:40 | 09/07/2006 | 10:00 | | 248531-24 | SB1255-3 | Soil | 09/06/2006 | 18:00 | 09/07/2006 | 10:00 | | 248531-25 | SB1125-5 | Soil | 09/05/2006 | 16:05 | 09/07/2006 | 10:00 | | 248531-26 | SB1135-5 | Soil | 09/05/2006 | 17:30 | 09/07/2006 | 10:00 | | | | | | | | | | | | | | | | | ### STL Chicago is part of Severn Trent Laboratories, Inc. | | SAMPLE INFORMATION
Date: | | |---------------------|-----------------------------|--| | Job Number.: 248531 | Project Number: 20006654 | | Customer...: SCS Engineers, Inc. Attn....: David Brewer Project Number....: 2000654 Customer Project ID...: GSA - SLOP Project Description...: GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|--|---|-----------------|------------------|--| | 248531-27 | SB1145-3 | Soil | 09/05/2006 | 18:00 | 09/07/2006 | 10:00 | | | · | ************************************** | | | | | | | | | | | | | | | | 1100,000 | | | | | | | | | | | | | | | | The state of s | | | | On any or any | | | | | | | | e e de un un manura de la decima decima de la dela decima de la decima de la decim | ************************************** | | | | | | | | | | | | the contract of o | | | | · · · · · · · · · · · · · · · · · · · | 1 | | | | | *************************************** | | | | | Job | Number: 248531 | LABORATORY | CHF | RONI | CLE | Date: (| 09/21/2006 | | |---------------------------------------|---|------------|---------|-------------------|-------------------------------|---------|---|----------| | CUSTOMER: SCS Eng | ineers, Inc. | PROJECT: | GSA - S | SLOP | | , | ATTN: David Brewer | | | | Client ID: SB1015-3
DESCRIPTION
% Solids Determination | 1 | | BATCH# | 07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1903 | DILUTION | | Lab ID: 248531-2
METHOD
Method | Client ID: SB1025-5
DESCRIPTION
% Solids Determination | 1 | | BATCH# | 07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1908 | DILUTION | | Lab ID: 248531-3
METHOD
Method | Client ID: SB1035-4
DESCRIPTION
% Solids Determination | 1 | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1911 | DILUTION | | Lab ID: 248531-4
METHOD
Method | Client ID: SB1045-2
DESCRIPTION
% Solids Determination | | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1914 | DILUTION | | _ab ID: 248531-5
METHOD
Method | Client ID: SB1055-3 DESCRIPTION % Solids Determination | 1 | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1917 | DILUTION | | Lab ID: 248531-6
METHOD
Method | Client ID: SB1095-5
DESCRIPTION
% Solids Determination | 1 | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1920 | DILUTION | | Lab ID: 248531-7
METHOD
Method | Client ID:
SB1095-10
DESCRIPTION
% Solids Determination | ī | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1922 | DILUTION | | Lab ID: 248531-8
METHOD
Method | Client ID: SB1105-1
DESCRIPTION
% Solids Determination | 1 | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1925 | DILUTION | | Lab ID: 248531-9
METHOD
Method | Client ID: SB1105-4
DESCRIPTION
% Solids Determination | ı | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1928 | DILUTION | | .ab ID: 248531-10
METHOD
Method | Client ID: SB1115-1
DESCRIPTION
% Solids Determination | 1 | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1931 | DILUTION | | .ab ID: 248531-11
METHOD
Method | Client ID: SB1115-5
DESCRIPTION
% Solids Determination | 1 | RUN# | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1934 | DILUTION | | ab ID: 248531-12
METHOD
Method | Client ID: SB1125-1
DESCRIPTION
% Solids Determination | ε | | BATCH# | '07/2006
PREP BT
188899 | | Date: 09/05/2006
DATE/TIME ANALYZED
09/09/2006 1937 | DILUTIO | | ab ID: 248531-13
METHOD
Method | | ī | | vd: 09/
BATCH# | 07/2006
PREP BT
188899 | | Date: 09/06/2006
DATE/TIME ANALYZED
09/09/2006 1939 | DILUTIO | | 3541
8015B MDRO | Extraction Soxhlet (DRO:
TPH - Diesel Range Organ | | 1 | 189077 | 189077 | | 09/12/2006 1939
09/12/2006 1630
09/15/2006 0501 | 1.00000 | | Lab ID: 248531-14
METHOD
Method | Client ID: SB1155-3 DESCRIPTION % Solids Determination | ו | | BATCH# | 07/2006
PREP BT
188899 | • | Date: 09/06/2006
DATE/TIME ANALYZED
09/09/2006 1942 | DILUTION | | Job | L #
Number: 248531 | ABORATORY | СН | RONI | CLE | Date: (| 09/21/2006 | | | |---|--|-----------|----------------------|-------------------|-------------------------------|----------------|--|----------------------|----------| | CUSTOMER: SCS Eng | ineers, Inc. | PROJECT | : GSA - | SLOP | | | ATTN: David Bre | wer | | | Lab ID: 248531-14
METHOD | Client ID: SB1155-3
DESCRIPTION | | | | 07/2006
PREP BT | | Date: 09/06/20
DATE/TIME AN | | DILUTION | | | Extraction Soxhlet (DRO)
TPH - Diesel Range Organics | (DRO) | 1 | 189077 | 189077 | | 09/12/2006
09/15/2006 | 1630 | 1.00000 | | METHOD | Client ID: SB1165-4
DESCRIPTION | | RUN# | BATCH# | '07/2006
PREP BT | | Date: 09/06/20
DATE/TIME AN | ALYZED | DILUTION | | Method
3541
8015B MDRO | <pre>% Solids Determination Extraction Soxhlet (DRO) TPH - Diesel Range Organics</pre> | (DRO) | 1
1
1 | 189077 | 188899
189077 | | 09/09/2006
09/12/2006
09/15/2006 | 1945
1630
0613 | 1.00000 | | | Client ID: SB1175-4 DESCRIPTION | | Date Re | cvd: 09/ | 07/2006 | Sample
#(S) | Date: 09/06/20 | 06
ALY7ED | DILUTION | | | % Solids Determination
Extraction Soxhlet (DRO)
TPH - Diesel Range Organics | | 1 | 189077 | | | DATE/TIME AN
09/09/2006
09/12/2006 | 1630 | | | | TPH - Diesel Range Organics Client ID: SB1185-2 | (DRO) | 1
Date Re | 189555
cvd: 09 | 189077 | | 09/15/2006
Date: 09/06/20 | 0649 | 1.00000 | | METHOD
Method | DESCRIPTION % Solids Determination Extraction Soxhlet (DRO) | | | BATCH# | | | DATE/TIME AN
09/09/2006
09/12/2006 | | DILUTION | | 8015B MDRO | TPH - Diesel Range Organics | (DRO) | 1 | 189555 | 189077 | | 09/15/2006 | 0726 | 1.00000 | | METHOD | Client ID: SB1185-5 DESCRIPTION % Solids Determination Extraction Soxhlet (DRO) | | RUN#
1 | BATCH#
188899 | '07/2006
PREP BT
188899 | Sample
#(S) | Date: 09/06/20
DATE/TIME AN
09/09/2006 | ALYZED
1953 | DILUTION | | 3541
8015B MDRO | Extraction Soxhlet (DRO)
TPH - Diesel Range Organics | (DRO) | 1 | 189077
189555 | 189077 | | 09/12/2006
09/15/2006 | 1630
1520 | 1.00000 | | METHOD
Method | Client ID: SB1195-3
DESCRIPTION
% Solids Determination | | RUN#
1 | BATCH#
188899 | 07/2006
PREP BT
188899 | | Date: 09/06/20
DATE/TIME AN
09/09/2006 | ALYZED
1956 | DILUTION | | | Extraction Soxhlet (DRO)
TPH - Diesel Range Organics | (DRO) | 1 | 189077
189555 | 189077 | | 09/12/2006
09/15/2006 | 1630
1556 | 1.00000 | | METHOD | Client ID: SB1195-4 DESCRIPTION % Solids Determination Extraction Soxhlet (DRO) | | Date Re
RUN#
1 | BATCH#
188899 | 07/2006
PREP BT
188899 | Sample
#(S) | Date: 09/06/20
DATE/TIME AN
09/09/2006
09/12/2006 | | DILUTION | | 3541
8015B MDRO | TPH - Diesel Range Organics | (DRO) | 1 | 189077
189555 | 189077 | | 09/15/2006 | 1632 | 1.00000 | | Lab ID: 248531-21
METHOD
Method | Client ID: SB1215-3 DESCRIPTION % Solids Determination | | RUN#
1 | 188859 | 07/2006
PREP BT
188859 | | Date: 09/06/20
DATE/TIME AN
09/08/2006 | ALYZED
1259 | DILUTION | | 3541
8015B MDRO | Extraction Soxhlet (DRO)
TPH - Diesel Range Organics | (DRO) | 1 | 189077
189555 | 189077 | | 09/12/2006
09/15/2006 | 1630
1708 | 1.00000 | | Lab ID: 248531-22
METHOD
Method | Client ID: SB1225-2
DESCRIPTION
% Solids Determination | | Date Re
RUN#
1 | | '07/2006
PREP BT
188859 | | Date: 09/06/20
DATE/TIME AN
09/08/2006 | ALYZED
1301 | DILUTION | | 3541
8015B MDRO | Extraction Soxhlet (DRO)
TPH - Diesel Range Organics | (DRO) | 1 | 189077
189555 | 189077 | | 09/12/2006
09/15/2006 | 1630
1745 | 1.00000 | | Lab ID: 248531-23
METHOD
Method
3541 | Client ID: SB1225-4 DESCRIPTION % Solids Determination Extraction Soxhlet (DRO) | | | | '07/2006
PREP BT
188859 | | Date: 09/06/20
DATE/TIME AN
09/08/2006
09/12/2006 | | DILUTION | | | | | | | | | • | | | | Job | Number: 248531 | LABORA | TORY | СH | RONI | CLE | Date: | 09/21/2006 | | | |---------------------------------------|---|----------|----------|----------------------|------------------|-------------------------------|-------|--|----------------|---------------------| | CUSTOMER: SCS Engi | ineers, Inc. | | PROJECT: | GSA - | SLOP | | | ATTN: David Bre | /er | | | METHOD | Client ID: SB1225-4
DESCRIPTION
TPH - Diesel Range Organi | cs (DRO) | | | BATCH# | /07/2006
PREP BT
189077 | #(S) | Date: 09/06/200
DATE/TIME ANA
09/15/2006 | ALYZED | DILUTION
1.00000 | | Lab ID: 248531-24
METHOD
Method | Client ID: SB1255-3
DESCRIPTION
% Solids Determination | | | | BATCH# | | #(S) | Date: 09/06/200
DATE/TIME AN/
09/08/2006 | ALYZED | DILUTION | | METHOD | Client ID: SB1125-5
DESCRIPTION
% Solids Determination | | | Date Re
RUN#
1 | BATCH# | /07/2006
PREP BT
188859 | #(S) | Date: 09/05/200
DATE/TIME AND
09/08/2006 | ALYZED | DILUTION | | METHOD
Method | Client ID: SB1135-5
DESCRIPTION
% Solids Determination | | | Date Re
RUN#
1 | BATCH#
188859 | PREP BT
188859 | #(S) | | ALYZED
1308 | DILUTION | | 3541
8015B MDRO | Extraction Soxhlet (DRO)
TPH - Diesel Range Organi | cs (DRO) | | 1
1 | | 189077 | | 09/12/2006
09/15/2006 | 1630
1857 | 1.00000 | | METHOD
Method | Client ID: SB1145-3 DESCRIPTION % Solids Determination | | | | BATCH#
188859 | /07/2006
PREP BT
188859 | | 09/08/2006 | ALYZED
1310 | DILUTION | | 3541
8015B MDRO | Extraction Soxhlet (DRO)
TPH - Diesel Range Organi | cs (DRO) | | 1 | 189077
189555 | 189077 | | 09/12/2006
09/15/2006 | 1630
1933 | 1.00000 | | | | | | | | | | | | | ### QUALITY ASSURANCE METHODS #### REFERENCES AND NOTES Report Date: 09/21/2006 ### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - Analyte was not detected at or above the stated limit. - Not detected at or above the reporting limit. - Result is less than the RL, but greater than or equal to the method detection limit. - Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. R - Result was determined by the Method of Standard Additions. - AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) - ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits. - LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - MSA correlation coefficient is less than 0.995. - MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable. - Ε SD: Serial dilution exceeds the control limits. - MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a Н - negative
instrument reading lower than the absolute value of the reporting limit. - MS, MSD: Spike recovery exceeds the upper or lower control limits. - AS(GFAA) Post-digestion spike was outside 85-115% control limits. Organic Qualifiers (Q - Column) - Analyte was not detected at or above the stated limit. - ND Compound not detected. - j Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Result was qualitatively confirmed, but not quantified. - Pesticide identification was confirmed by GC/MS. - The chromatographic response resembles a typical fuel pattern. - The chromatographic response does not resemble a typical fuel pattern. Z - Result exceeded calibration range, secondary dilution required. - AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - MB: Batch QC is greater than reporting limit. - LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - Concentration exceeds the instrument calibration range Α - Concentration is below the method Reporting Limit (RL) - Compound was found in the blank and sample. B - Surrogate or matrix spike recoveries were not - obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - Alternate peak selection upon analytical review Н - Indicates the presence of an interfence, recovery is not calculated. Ţ - М Manually integrated compound. - The lower of the two values is reported when the % difference between the results of two GC columns is ### QUALITY ASSURANCE METHODS ### REFERENCES AND NOTES Report Date: 09/21/2006 ``` greater than 25%. Abbreviations AS Post Digestion Spike (GFAA Samples - See Note 1 below) Batch Designation given to identify a specific extraction, digestion, preparation set, or analysis set CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification CF Confirmation analysis of original c1 Confirmation analysis of A1 or D1 ¢2 Confirmation analysis of A2 or D2 0.3 Confirmation analysis of A3 or D3 CRA Low Level Standard Check - GFAA; Mercury CRI Low Level Standard Check - ICP C٧ Calilbration Verification Standard Dil Fac Dilution Factor - Secondary dilution analysis Dilution 1 D1 D2 Dilution 2 D3 Dilution 3 DLFac Detection Limit Factor DSH Distilled Standard - High Level DSL Distilled Standard - Low Level DSM Distilled Standard - Medium Level EB1 Extraction Blank 1 Extraction Blank 2 EB2 EB3 DI Blank ELC Method Extracted LCS ELD Method Extracted LCD ICAL Initial calibration ICB Initial Calibration Blank Initial Calibration Verification ICV IDL Instrument Detection Limit ISA Interference Check Sample A - ICAP ISB Interference Check Sample B - ICAP Job No. The first six digits of the sample ID which refers to a specific client, project and sample group Lab ID An 8 number unique laboratory identification LCD Laboratory Control Standard Duplicate Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest LCS Method Blank or (PB) Preparation Blank MB MD Method Duplicate MDL Method Detection Limit MLE Medium Level Extraction Blank MRL Method Reporting Limit Standard MSA Method of Standard Additions MS Matrix Spike MSD Matrix Spike Duplicate ND Not Detected PREPF Preparation factor used by the Laboratory's Information Management System (LIMS) PDS Post Digestion Spike (ICAP) RA Re-analysis of original Α1 Re-analysis of D1 Α2 Re-analysis of D2 Α3 Re-analysis of D3 RD Re-extraction of dilution RE Re-extraction of original RC Re-extraction Confirmation RL Reporting Limit RPD Relative Percent Difference of duplicate (unrounded) analyses RRF Relative Response Factor RΤ Retention Time ``` ### QUALITY ASSURANCE METHODS ### REFERENCES AND NOTES Report Date: 09/21/2006 RTW Retention Time Window Sample ID A 9 digit number unique for each sample, the first six digits are referred as the job number SCB Seeded Control Blank SD Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) UCB Unseeded Control Blank SSV Second Source Verification Standard SLCS Solid Laboratory Control Standard(LCS) pH Calibration Check LCSP pH Laboratory Control Sample PHC LCDP pH Laboratory Control Sample Duplicate MDPH pH Sample Duplicate MDFP Flashpoint Sample Duplicate Flashpoint LCS LCFP G1 Gelex Check Standard Range 0-1 Gelex Check Standard Range 1-10 62 Gelex Check Standard Range 10-100 G3 Gelex Check Standard Range 100-1000 G4 Note 1: The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current abbreviation used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/- the RL. # CHAIN OF CUSTODY | | A = Air | 1 11 1 | S Soll : | = Wastewater | | RELINQUISHED BY | _ | RÉI INOI IISHED RY | A I | | . 10 s | 9 | ं 8 | 7 | | S | 4 | : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; | , 2 | one
one | Laboratory ID MS-MSD | Lab PMI | Project Location: | Project Name: | [lene#]s | Sampler Name: | Phone: /08-534-5200
Fax: 708-534-5211 ; | University Park, IL 60466 | 2417 Bond Street | | SEVERN | en e | | |-------------------------------|----------|---|-----------------|---|------------|------------------|------|--------------------
--|----------------|--------------|----------|--|--------|-----------|--|--|---|------------|--------------------------------------|---|------------------|---------------------|----------------------------|------------|---------------|--|---------------------------------------|------------------|--------------------------|----------------|---|------------------------------------| | | 0 = wipe | | DS = Drum-Solid | 음설· | Watrix Xov | (b) (6 | 5) | à | 587125F | 58/115-5 | 1/2 | 105 T | 581105 | 562535 | 50/5353 | 58055 | 38475- | 3B035-4 | 3870255 | 507015-3 | Client Sample ID. | | S MO | | - e
(b) | | | 1667
114-11 | er i | OFFI
OFFI
EAF
W | | rejenstel kunner i geografije en rejenskiste frank i skriger en skriger en skriger. | | | | O. Oaka | 5. Widemouth Glass | | 1. Plastic
2. VOA Vial | <u></u> | , \ | シクルマ | YWA Y | | | and the same | X | | | | 190 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Edgaelina mag | r tearth | 258 | | Fax: | Date Required | Project Number: 02200270.5 | (6) | > 4 | E-Mail: 122 | Fax 1931 | Phone: 227 | Mart - V | Company 5 | , in p | Report To: | | CTI China | 1
[] | 29.0
 29.0 | ക്ക് | T AT | يني | | Nowl | . 68 | 3456 | 3/2/5/6 | 2.55 6 | 27% 56 | 5 | 123 56 | 12:00 5 6 | 5226 | 23 SS | 815561 | 7.55 5 6 | 1 2 2 mg | Sampling Ma | | | Volume Presery | #/Cont | | Ly O'ZZe | 7573 | 151-1510 | Îsate I | # d2516 | (ceth) enline | | | ann ie a nart of Sovarn Trant | | 7. 5 7. 3 7. 3 7. 3 7. 3 7. 3 7. 3 7. 3 7. | 4 4 | ing (1986)
Salah
Salah
Salah
Salah | - K | TIME RECEIVED BY | 100 | TIME -2 RECEIVED | X | 1 | A6 3 | X | | X | X | X | 20
25
25
25
24 | | 2 2 | 1000
1000
1000
1000
1000 | Men J
So
PLBs | \$49
\$2
% | 1 A | | | | mension PO#: | Fax | | 211 | Company: | | Bill To: | | lahoratoriae Inc | 50 | - 1
- 16-34
- 39-3
- 6-3 | | | THO | (b) | | 2 | | \$ 30 % | | | | | *** | 0 | 22.7 | | | | is see | 7.75° g | Y on the | | | | Ouotes (S. S. S | A A A A A A A A A A A A A A A A A A A | | M | | Sandy light | | | | 4 47 W | er st
pr | |
est
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal
Personal | | e in COMPANY | 25 | COMPANY | S VEC | | 1 2 | 16 As | | | | | | | 22 | | A property of the state | : | 1, 37 | | | | で は で で は で で か か か か か か か か か か か か か | 3) - 3 | | | | 1 | | | | | Bill of Lading | ; 6 | O Date Received | | <i>/</i> 06! | | 20 C | | | | | | 1 . | | | | | | r Ga | | in (car) | Sampie Labels an | Yes No NA | Yes No | 0 | (2.3)*(2.1) | Temperature °C of Cooler | ∕Yes) No : | Received on Ice | Package Sealed | Lab Lot# | Shaded Areas For Internal Use Only | | H RUCK ILS | 120000 | Bill of Lading COC attac | hand penvered | | 2000 | lusa
Olar | - | Sometic C | and the second s | J 7 | | | ************************************** | | | S. Carlotte and Ca | | - Children | · Park | | Rema | CONTINUE DE LA | abels and GOC Agree | Yes No (NA) | | |) (2.5) | | ja e | Samples | Samples | 48531 | mai Use Onlyof | | A = Air | OL = Oil | 1 11 | W = Water Soll | Water | RELINQUISHED (D) | RELINQUISHED | 74 | F 73 | 72 | | 20 | 19 | 55 | ゴ | 91 | 5 | | 8 | Laboratory ID MS-MSD | Lab PM: Vool | | Project Name: | Sampler Name: 2 | Fax: 708-534-5211 | University Park, IL 60466 | STL Chicago | SEVERN
TRENT | Section 2 of the section sect | | |--|--------------|---|--|-------------------
--|------------------|---------------------------------------|-------------------------------|---------|--|---|-----------|--|--|---|--|---
---|--|--------------|-----------------------------|---------------------|-----------------|--------------------------------------|--|--|--|--|--| | 0 = | | DL = Drum Liquid | S = Drum Solid | 227 3 | (G) COMPANY | COMPANY | 581255-3 | 28.22.27 X | 58,2252 | 83215-3 | JB/195-4 | 5-561105 | 584855 | 2-581185 | N-521185 | 58165-4 | SB/155-3 | 5B1155-2 | Client
Sample ID | | 9 C 0 | | (b)
(6) | | -7 | An in a series of the o | | M ! | | | The state of s | | ž | | Container Key. | | 2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | N. K. | 426 | 72) | Ž, | 2.05 | 1/25 | | 11:45 | 11:00 | 8:10 | Phy & Too | Sampling
Date Jime | Fax: | tuired
Copy: | Project Number: | : | E-Mail: J Jan Dry | Fax 213-451- | Phone 95-45 | O V | 34 5 1 | Report To: | | 7. NORE | 6. Cool to 4 | 4. NaOH, Cool to 45. | 2. H2SQ4, Cool to 4° | Preservative Key | \$ \$ \$ \$ \$ 10ME \$ \$ | DATES 2 3 TIME X | | 1 1 N | 。 | アンマメ | V. | アスペスス | 5 5 6 X | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ころのメス | XXOV | 0
3
7
X
X | × × | Ma
Comi | 15 | ab | Presery Presery | #/Cont. | | | 18 18 66 EM | maye Ste 100 | | The control of co | | مقترمة مسامات الفيدية المستريد بمثل كم الس | | ·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
· | | COMMENTS | RECEIVED BY (b) | RECEIVED BY | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | \$11.2
\$1.2
\$1.2
\$1.2
\$1.2
\$1.2
\$1.2
\$1.2 | | | 100000
100000
100000
100000 | | | | # 15 P | 8688
Ple | 2 | - 100g | | | PO# 12 G | | Phone: | Address: | Contact SZ z z | Bill To: | | ,
5
1 | | erityr
e ski
tspe | A CONTRACTOR OF THE | | | O | | | | | 1 (44 × 1) | | | | 4 112 | | | · 如 · · · · · · · · · · · · · · · · · · | * * * * * * * * * * * * * * * * * * * | | | | | | (87%)
1 87(1)
2 (44)
16 (7)
17 (7) | n sed
s P,
t eas | M DANG
MT GEA
ME OF ES | | | | | - | | | | A CONTRACTOR OF THE PARTY TH | | 000 | 9° • 3•
3° 1: 3'
-: [1] | | 7 (7) | 243 | 0.0 | The second secon | n Sign | | and the state of t | | | о (44)
gj. (44)
gj. (44)
gj. (44)
gj. (44) | | , 1980)
:
: | | | W#HIN H | | 1014
129 4
12 34 51 | 4 3 % de | | Shaded Area | | | | Bill of Lading | . 6-14 | Date Received 9/7 | DATE | 7 06 | | | | The second secon | | | | ti iu
Airu i | 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A | | - A CANADA AND AND AND AND AND AND AND AND AN | eric
Seric
Long
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Seric
Se | nālyses /ˈRe | C . | Sample Labels and GOC Agree | Yes No NA Yes No NA | | Within Hold Time Presery Indicated | Temperature °C of Cooler | Received on Ice Samples Intact Yes No Yes No | Package Sealed Sample Yes No Yes | | Shaded Areas For Internal Use Only | | mi nono snigo. | | Chic | Selivered Selivered | 106 | ME . | TWE
060 | 0.00 | yerek, si | | | nes essen | | | | ad a significan | er gayer fig | | 14 (GE- | 77 S | | Agree
COC not present | Yes No NA | Yes No NA | Indicated | | es Intact | Samples Sealed Yes No | |
 of
 | | 2 | SL = Sludge MS = Miscellaneous OL = Oil | WW = Wastewaters | RELINQUISHED | REUNQUISHED | | | | | | | | 1 | | 72 | · 26 | - 25 | Laboratory | | Project Location | Project Name: | Jeneth | n di | Phone: 708-534-5200 | University Park, IL 604665 | STL Chicago | TRENT | SEVERN | | |---|---|--|------------------|--------------------------|-----------------------------|-----------------------|------------------------------|------------------------------|--------------------------|-----------------------------|---------------------------
--|--------------------|----------------|--------------|--|---------------------------|------------------------|-----------------------------|-----------------|---------|------------------|---------------------------------------|--|--|-------------------------|-----------------|------------------------------------| | | ineous | STEWS! |] S
]
[(t | | ÷(*) | \$ ₹
\$ ₹ | MSJ- | gif | eor | J gr | iteix | ####
 - - - - - - - - - - - - - - - | s be | jjf €g
Saso | | njid s | MS-MSD | 5 | ion: | Ne i | , Do. | e: | 708-534-5200
708-534-5211; | 200
400
400
400
400
400
400
400
400
400 | 1
2 34
a | | | | | | DL = Drun
L = Lead
Wl = Wipe | Matrix Key SE & Sedin SO Solid | . (6 | | ur. | 57 S | y or .
re | | | ika yya | r.
Palu | 3 | | N | 5811 | 185 | J. 3473 | 4.5.14 | عس کار | 0.11 | 3 | | e ij i
ori Iris
ori Iris
ori | | | U | 3 | | | | Drum Liquid
Leachate
Wipe | Solid Village So | COMPANY | COMPANY | 385
572
5711 | ∵ (t | l Dis
Stiffe
bas | 2000 j
12 ÎE
12000 | rak
di i | 9 14 S | 475 | ر
دور (۱۹۰ | | 145-3 | 25-5 | 5.52 | Client
Sample ID | 119 | 69 VQ | | | Signistr | رود
ش | 40
11
13
21 | 8 30
193 - 1
1 337 71
1 1101 | | Man | | | *************************************** | 4. Amber
5. Widen
6,₃ Other | Container 1. Plastic 2. VOA Vial 3. Sterile Plastic | J. C. L. | V 545/2 | might in a | | ametonici | iinio
ana | 20 8
30.10 | 1 79
212 | 30:0Y | l di
Bios | ego samo | | | 20 | and the second | Tax: | Date Required Hard Copy: | Project Number: | | 100 m | E-Mail: | Fax. 99 | Pomer Control | Address | Companys | Report To: | | | 4. Amber Glass
5. Widemouth Glass
6. Other | Container Key.
astic
DA Vial
berile Plastic | DATE | ars. | 16 | 94
5 5 | 985. | e n | ß ; | seri
Far | 38.
S | ek. | | 6 | 2 | 506 % | Sampling
Date Tin | | 7 | 70.56 | 5 | | bally | 3=4 | クシャクジ | ロイルの | 1300 | 0; | | | 4, % 6, 14 | ω κ» μ— σ | nort: | 52 | Al (| 44
200 | /10/
/10 5
/216 | NE 18 | 1.74
0168
180 | 1,300
a 181
8036 | 14 18 A | १०७१
१ | 10 | 000 | 0 | 73 | 6 | 27/-25 | | nowes Inco | | | 200 | | /
/
/ , | | 1000 P | | | SILS | NaOH, C
NaOH/ZI
Cool to 4
None | Preservativ HCI, Cool to 4º H2SO4, Cool to H2SO3, Cool to | 1991
17 Q | 1 (3
6) | 009 | ned
Section | aide
art | 5 9 T | 903: | HODE
SHW | 144 | វាទូក
១០ បុ | (A) | 0 | 2 | <i>⊗</i>
<i>∨</i> | Com | atrix
VGr | ah 🌣 | Preserv | #/Cont. | Refrg# | 200 | 2/3 | 20 | 1 | 17 Proc | , | | STL Chicago | 4. NaOH Cool to 4° 5. NaOH/Zn; Cool to 4° 6. Cool to 4° 7. None | Preservative Key CI, Cool to 4° 2804, Cool to 4° NO3, Cool to 4° | TIME | at or | 18 1
18 1
18 10 | 106
1071
1576 | 705
707
2070 | CARA
ALBA
ALGAS | erty.
Pres | erac
salle
Bot | 0
9156 | 30,41
G198
Det | 40)
26)
28) | | | Z | | 582
2 | | | | | 1 | 4.0 | ं ।
जिल्ला
व | | | | | Ω. | 37 69 (37) | - qe set o
guanour a | . 831
. 831 | M | 3 3 5 4 7 | 000
000 | र्गक
इंगक | (K) (X | 7 4 4
7 4 4
9 4 10 | iden: | | g v 1-es | \$* .
2* . | X | \
\ | 9.53
5773 | 724 |)
5/5
ハン | , | | | | CONCERN | 8 :6
VIEE: | 508 | | 4195
- 200 | | | t of Seve | io viic
iscone
economi | io sonor
stori ula
Pati ula | | | i jedi
ajihas
i jim j | 42 ≘
Yn o
Whe | 110 t
18 11 | 1 88
1 7 7 7
1 7 7 7 1 | 2006
2006
2006 | iévi
(ji
1, v | #34,5
 164 1 | Sett
vit
teqt | | \searrow | λ | (%) () () () () () () () () () | TPU | 15
215
LL | | | | | | e o ni . | - 00년
- 1
- 1
- 1 | 2 2
 0 2
 3 | 1201-
1201- | - | | part of Severn Trent Laborator | \$** #307
83 | COMMENIS | RECEIVED BY | RECEIVED | | 4708 | 1 | | njeđ
lov | 3 <u>8</u> 23 | 1 5 | | | | f | | 1 / /7 | | | | | | PO#: | Gax (C) | | idress: | Company: | BIII To: | | Laborato | 886904
896-16. | N 67 30 S | ł | 1 1 | 11 30
1507 | e sa | rin. | . S.A. | 9003
9003 | ar
idVa | yi (1) | 944.14
3.14C | i da
Nas
Vie | | | 7 9 E | 1 985% (TV)
35 45 (CT) | 7 21 | 746. 80 | | 1 | | 34 G.
34 G. | 1320 G |) 3;
Heik
Hem | | | | | ries. Inc. | palitica
6d var | rest Mo | ()
() | 3)
3) | Į. | len/ | 0.Vf | 7(-7 | M/Z | 733
778 | i ii. | | 8 | | - | 1 ,3%) . | a di s | 188 - 178
44 - 1884 | one
View | | | | (jv : | .)k | 15541;
1550 | | NUC 5 12 | 1 | | | | | rèd | | 7W
(7.97) | 710 | F1 /4 | | N S | 1.55 M | | 1 100 | \$ · · | - | | 7.77 | 7. 19.577b | | gwe -
her ş | | | | Creator | 3516 | | rofore
tariat | ater c | - | | | Algoria | a) be yor
e flovers
had yon | r 19 1 | racia.
Sóvio
Jemos | 7 <u>18</u>
7 (2
114) | Ant I | 10 20 M | | 1 .89 | 977 <u>(</u>
7 50
188 | 1 | unsa
Bren | | - | | 12 S | r anisa
Por | per e | <u> </u> | 1000000 004 | | | 1 | i | | arti qu | TATION STREET | | | | | | 3 (373) 71 | 117/48 | N 725 | Total | 1 | 1. | U*+ 1× | | 1 | 7 | | + | | i ir os | bries i | | s negeria. | | | | | 1 |)
24] | 30 | | | | | ars 7 | on with | APANY | COMPANY | | SPAN
SPAN
STORY | () : 18
 0 3
 13 6 | 2,550 | en u
Ger | p., 1 | Me
Fighting
Bulling | 100 | | - | | 990
7 (3)
7913 | | 1782
-0. 4
80.30 | 474 | 7 | | | 10 6 7
11 1
10 3 5 | 22964
2 0
2 1 90 | 3 3 | | 1. 1 | | | | | nep (Caper | | | 0 | 100 | 4060 | 1 C1 | بإبتنا | | 107.1 | | | | | <u> </u> | | | | | | | | | | , n. 1882 | | Sha | | | | eriO %
Grad u s×. | 1 | 2.9
2.9
0.00 | 1 | | \$130 | 3 | | ille i | | | | | | i.r. | Ž | ે 🕻 | mple L | fes (| Yes | THIII | | npera | Receiv
Yes | Yes | | ded Are | | | ्र
ि Ladi | Dane Received 2 | ons
o c | 38174
38174 | | r lata
n 1901 | | 1 | yE đ | E) | | | | | | - F | litiona | | abels | Yes No NA | Yes No | Within Hold Time | ÷ | e e | Received on Ice Yes No | Yes No | Lab Lot# 24 | as For | | | 2 (2 (5) | De la | <u>\</u>
 \} | | r ari | √L•ar | 13 | - C | भूषित ५५ | W | 079
2807 | | | | | | Amai | | and C | | | | | et | | | | Internal | | | 1 | 1880 | ខណៈ
ក១មេ | 000 | i: «,, | d (40 | | 4 2
11 9 11 | 1 | £ | 3:
::. | ۱ ا | | | | | yses / | | Sample Labels and COC Agree | Yes | Yes | Pres | | Temperature °C of Cooler | Sa | | Lab Lot# 248531 | Shaded Areas For Internal Use Only | | STL-8208 (0 500) | and the second | 7 %
Hand Delivered | 120 per resid | 00 ch | Nicolais Vicolais S | | n physics con | nga an anna a | | 1 | | The state of s | es essere | - A | | (1940)
(1940) | Rema | Y | iree
Toot orac | Yes No NA | No. | erv. Indi | 1 | | Samples Intact Yes No | Yes No | (D) (1) 82 | ıly of | | 8
[66]
[66] | TI Chica | | | 0 | | | | | | | | | | | | | | | 1 | N (| | ated | | | 3Ct | | ē 12 | | STL Chicago Intra-Laboratory Internal Sample Custody Transfer Record client: Sc 9 Job No: | And the state of t | | A STATE OF THE STA | - | | | | | | 7 | W. | , , , , , , , , , , , , , , , , , , , | /} | 1 | | 13-23-26,27 | こして | 01-10 | 12,11, 1143 | (+112,24,25 | | (RO | Sample No. | |
--|--|--|--
---|--|--|--|---|---|----|--
--|----------|--|--|--
--|--|-------------|--------|-----------|------------------|----------| | | | | The state of s | | | | | | | | CONTRACTOR OF THE PROPERTY | //) | | | _ | ですび | Metals | QQ | 0 4 | 5 | 113-23 | Analysis | | | | | | A STATE OF THE STA | Andrew State Community of the | and the same t | | | | | |) ((| 6) | | | | | | Association | | | | Relinquished by: | | | | | | | | | | | As a separate the separate to | | | The state of s | (b) | (6) | | START POP | | | | , / | | 25.2007.4 | Received by: | A 14 A | | | | | | | | | | | | | | | <u> </u> | - | 0/12/06 | 2018/12 | 001010 | 10/10 B/B/Ka | 90/10/10 | 3/2/ | 00111 | T a | | | | | | | | | | | | | | | | Mill | 13; W | 630 | しなり | ション | 1750 | 3 | 3 | | | _ | | | A STATE OF THE PARTY PAR | A | er e | | | | | | | | | And the state of t | | The state of s | A STATE OF THE STA | and the second s | The state of s | The second secon | | t dans | | Continuo | Comments | Ķ, | rpjsckl Job Sample Receipt Checklist Report | V2 | |---|--| | Job Number:: 248531 Location:: 57222 Check List Number:: 1 Description:: Customer Job ID: Job Check List Date:: 09/07/2006 Project Number:: 20006654 Project Description:: GSA - SLOP Customer:: SCS Engineers, Inc. Contact:: David Brewer | Date of the Report: 09/08/2006
Project Manager: rcw | | Questions ? (Y/N) Comments | | | Chain-of-Custody Present? Y | | | Were samples dropped off at or picked up by STL? N | | | Custody seal on shipping container? Y | | | If "yes", custody seal intact? Y | | | Custody seals on sample containers? N | | | If "yes", custody seal intact? | | | Samples iced? Y | | | Temperature of cooler acceptable? (4 deg C +/- 2). Y 2.3,2.1,2.5 | | | Samples received intact (good condition)? Y | | | Volatile samples acceptable? (no headspace) | | | Correct containers used? Y | | | Adequate sample volume provided? Y | | | Samples preserved correctly? Y | | | Samples received within holding-time? Y | | | Agreement between COC and sample labels? Y | | | Radioactivity at or below background levels? Y | | | A Sample Discrepancy Report (SDR) was needed? N | | | Residual Chlorine Check Required? | | | If samples were shipped was there an air bill #? Y | | | Sample Custodian Signature/Date Y | | | | | Page 1 | Address Address Address To request a pacific facts facts of | EXPIRESS From | | |--
--|--| | Total Participes Total Participes Total Participes Total Declared Value* Samples See About 100 Cedit Card Auth. Declared Value* Samples See About 100 Cedit Card Auth. Declared Value* Total Declared Value* Total Declared Value* Samples See About 100 Cedit Card Auth. Declared Value* Total Declared Value* Samples See About 100 Cedit Card Auth. Declared Value* Total Obstacle Value* Total Declared Declar | 4a Express Package Service FedEx Priority Overright FedEx Priority Overright FedEx Day FedEx Standard Overright FedEx Day FedEx Day FedEx Express Save Search Jenses on Monary Search Jenses Strippon FedEx Day FedEx Express Save FedEx Day FedEx Freight Service FedEx Day Fe | | # CASE NARRATIVE ### STL Chicago Extractable Hydrocarbon Case Narrative SCS Engineers Inc. GSA - SLOP Job #: 238531-13 through 23, 26, and 27 Diesel Range Organics (DRO) - 1. This soil sample was extracted based on SW846 method 3541. The extracts were analyzed for DRO based on SW846 method 8015B. An HP5890 gas chromatograph equipped with a - 2. All required holding times were met for the extraction and the analysis. flame ionization detector and Xti-5 column was used for the analysis. - 3. The method blank was below the reporting limit for DRO. - 4. The surrogate compounds used for this analysis were o-Terphenyl and 2-Fluorobiphenyl. All surrogate recoveries associated with the method blank and blank spike were within statistical control limits. - 5. The blank spike recovery was within statistical control limits. A solution of Diesel Fuel was used for spiking. - 6. A matrix spike and a matrix spike duplicate were performed on sample248531-17(SB1185-2). Due to concentration of target compound detected the MS and MSD were diluted 1/10 to be within linear range. Recoveries were out bias high due to concentrations detected. - 7. A Diesel Fuel #2 standard was used for quantitating DRO results, using a hydrocarbon range from C10 through C32 to include "heavier" fuels such as Motor oil. An alkane standard ranging from C8 through C36 was analyzed to establish retention time windows. - 8. All initial and continuing standard calibrations associated with this sample were in control. - 9. This sample had DRO detected and appears to match a typical fuel-type pattern that is in Diesel fuel hydrocarbon range and "later" than Diesel fuel hydrocarbon range. (b) (6) Brenda J. Thompson Organics Supervisor Date (1.2) 性病的 核凝白经验或外别(链路)的 x 10 1 1 1 1 1 1 1 1 # QUALITY CONTROL SUMMARY STL Chicago is part of Severn Trent Laboratories, Inc. Test Description 2-Fluorobiphenyl (surr) o-Terphenyl (surr) Test 2FLUBP OTERPH | CUSTOMER: SCS | 1808888 | umber.: 248531 | ECOVER: | | | Date.: 09/20/2006
awid:Brewer | |---|---------|--|--|---|---|--| | | | : TPH - Diesel Range Organics (DRO)
: 8015D | | | .: 3541 Solid
.: 189555 | Prep Batch: 189077 | | Lab ID | DT | Sample ID | Date | 2FLUBP | OTERPH | | | LCS
MB
248531- 13
248531- 14
248531- 15
248531- 16
248531- 17
248531- 17
248531- 17
248531- 18
248531- 18
248531- 20
248531- 20
248531- 21
248531- 21
248531- 22
248531- 23
248531- 23
248531- 23 | | SB1155-2 SB1155-3 SB1165-4 SB1175-4 SB1185-2 SB1185-2 SB1185-2 SB1185-3 SB1195-3 SB1195-4 SB1225-2 SB1225-4 SB135-5 SB1145-3 | 09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006
09/15/2006 | 77 71
69
65
70
77
83
70
58
61
59
69
57 | 91
777
81
83
78
76
80
112
107
85
74
80
92
83
81
89 | e de la companya del companya de la companya de la companya del companya de la co | Limits 41 - 118 38 - 150 (b) (6) QUALITY CONTROL RESULTS Reag. Code Lab ID Job Number.: 248531 QC Type Report Date.: 09/20/2006 Date Time Dilution Factor Test Method.....: 8015B MDRO Method Description.: TPH - Diesel Range Organics (DRO) Equipment Code....: INSTO9 Analyst...: san Batch..... 189555 Description | MS Matrix Spike | | 0061 | IWLDIEA | 248531-17 | 10.0000 | 09/ | 15/2006 223 | 35 | |--|-------|-----------|-----------|------------|-------------|----------|-------------|-----| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | * Limits | F | | Diesel Range Organics (DRO), 3541 Soli | ma/Ka | 455.031 | | 757.900 | 105.484 | 461 | % 62-120 | - × | | Job | Number.: 248531 | QUALITY | CONTROL R | ESULTS | Report Date.: 09/2 | 0/2006 | | |---------------------------------|-----------------|---------------------|---------------|------------------------|--------------------|--------|------| | CUSTOMER: _SCS Er | gineers, Inc. | PROJECT | F: GSA = SLOP | | SATINES. | . 70 | | | QC Type | Descript | ion | Reag. Code | Lab ID | Dilution Factor | Date | Time | | Test Method
Method Descripti | | ange Organics (DRO) | , , | le: INSTO9
: 189555 | Analys | t: san | | QC Result ~~455.031 True Value 756.800 QC Calc. 152 101 Orig. Value 105.484 * Limits 62-120 * % 6 R 30
Parameter/Test Description Diesel Range Organics (DRO), 3541 Soli mg/Kg Units QC Result 220.729 | Jo | QUALITY
b Number.: 248531 | CONTROL RE | SULTS | Report Date.: 09/2 | 20/2006 | | |--------------------------------|---|-----------------|----------------------------|--------------------|---------|--------------------------------| | GUSTOMER: SCS E | ngineers, Inc. PROJI | ECT: GSA - SLOP | 123 (2 - 12 <u>2-2</u> 5). | ATEN: David Brewer | | ., ₇₋ 79 <u>-</u> 2 | | QC Type | Description | Reag. Code | Lab ID | Dilution Factor | Date | Tîme | | Test Method
Method Descript | : 8015B MDRO
ion.: TPH - Diesel Range Organics (DRO) | Equipment Code | | Analys | t: san | | | LCS Laboratory Control Sampl | e | 0061 | WLDIEA | 189077-002 | | 09 | /15/2006 0424 | |--|-------|-----------|-----------|------------|-------------|----------|---------------| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | * Limits F | | Diesel Range Organics (DRO), 3541 Soli | mg/Kg | 57.647 | | 66.670 | 4.199 L | 86 | % 62-120 | ## TEPH METHOD BLANK SUMMARY CLIENT SAMPLE NO. 189077-MB Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 248531 Lab File ID: 09110609 086 Lab Sample ID: 189077-1MB Instrument ID: INST09 Date Extracted: 09/12/06 Matrix: (soil/water) SOIL Date Analyzed: 09/15/06 Level:(low/med) LOW Time Analyzed: 0348 GC Column: XTI-5 ID: 0.53(mm) PCB Only: Sulfur Y_N_ PCB Only : GPC Clean-up Y N THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD: | 1 | 1 | | | |---|--|--|--| | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED | | 189077-BS
189077-BS
189077-BS
189077-BS
23455-34
23455-34
234567890123455-2MSD
23456789012345678901234567890 | 189077 - 2LCS
248531 - 13
248531 - 14
248531 - 15
248531 - 16
248531 - 18
248531 - 19
248531 - 20
248531 - 21
248531 - 22
248531 - 23
248531 - 26
248531 - 27
248531 - 17MS
248531 - 17MS
248531 - 17MS
248531 - 17MS
248531 - 17MS | 09110609 087
09110609 088
09110609 089
09110609 091
09110609 092
09110609 105
09110609 107
09110609 108
09110609 109
09110609 110
09110609 111
09110609 117
09110609 118 | 09/15/06
09/15/06
09/15/06
09/15/06
09/15/06
09/15/06
09/15/06
09/15/06
09/15/06
09/15/06
09/15/06 | | ŧ | 3 | . 1 | (b) (6) | **COMMENTS** ## SAMPLE DATA 24 STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | | Method % Solids Determination % Solids, Solid % Moisture, Solid | 8015B MDRO TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3541 Solid* | TEST METHOD PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1155-2 Date Sampled: 09/06/2006 Time Sampled: 08:00 Sample Matrix: Soil | Job Number: 248531 | |-----------------------------|--|---|---|--|--|--------------------| | Page 15 | | 85.4
14.6 | 35 | SAMPLE RESULT Q FLAGS | Lak
Dai
Ti | LABORATORY TES | | | | 0.10 | 1.9 | 100 | Laboratory Sample ID: 2
Date Received O
Time Received 1 | ST RESULTS | | er i e. | | 0.10 | 8 | 20 | 248531-13
09/07/2006
10:00 | | | | | | 1.00000 | NOTINITO | | | | | and the second of o | %% | mg/Kg | UNITS | The control of co | Date:09 | | 4. · · · · | | 188899
188899 | 189555 | BATCH D | and the state of t | Date:09/20/2006 | | | | 09/09/06 1939
09/09/06 1939 | 09/15/06 0501 | DATE/TIME | schanic especialistic in paradopatoris in processors | \$67 | | STL Chicago | | 913
913 | san | TECH | | | Data File: 09110609 088.d Report Date: 20-Sep=2006 14:35 ## STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 088.d 248531-13 Client Smp ID: SB1155-2 15-SEP-2006 05:01 Data file : Lab Smp Id: Inj Date : Inst ID: imst09.i ners 106,dro09,248531-13 Opërator Smp Info lisc Info Comment lethod leth Date Quant Type: ESTD Cal File: 09110609_007.d Date : bottle: 88 1.00000 HP Genie -2n 4.04 Factor: Compound Sublist: 8015dro.sub Target Version: 4.04 Processing Host: CHI-GROUPER Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.411
14.600 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCERN | CALLONS | |-----|--------------------------------|--------|--------|--------|----------|-----------|-----------| | | | | | | | ON-COLUMN | FINAL | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | === | | == | | | | | | |
\$ | 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 1283356 | 15.3338 | / 2.913 \ | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1636635 | 16.1992 | 3.077 | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 15069981 | 184.524 | 35.051 | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 15069981 | 184.524 | 35.051 | | | | | | | | | | CONCENTRATIONS STL Chicago is part of Severn Trent Laboratories, Inc. | | | | ТЕСН | san | | |
 | | | | STL Chicago | |--------------------|-------------------------------|---|----------------------------|---|--|-----|---------|---|--------|------|-----------------------------| | | | | DATE/TIME | s 7550 90/11/60 | 09/09/06 1942 clb
09/09/06 1942 clb | | | | | | , ,,, | | Date:09/20/2006 | David Brewer | | ВАТСН рТ | 189555 | 188899
188899 | | | | | | | | Date:09 | ATTN: | | UNITS | mg/Kg | × × | - : |
- : | : | 1. 44. | ' 1- | e - · | | | | | DILUTION | 1.00000 | | | | | | | | | ω | |): 248531-14
:: 09/07/2006
:: 10:00 | RI | 4.9 | 0.10 | | · | | , | | | | RESULT. | | Laboratory Sample ID:
Date Received
Time Received | 70 | 2.0 | 0.10 | | | | | | | | F & E | GSA - SLOP | Labor
Date
Time | Q FLAGS | | | | | | | | Page 16 | | ABORATORY | PROJECT: | | SAMPLE RESULT | 35 | 83.7 | | | | | | Ľ | | Job Number: 248531 | ngineers, Inc. | Customer Sample ID: SB1155-3 Date Sampled: 09/06/2006 Time Sampled: 08:10 Sample Matrix: Soil | PARAMETER/TEST DESCRIPTION | TPH – Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | % Solids Determination
% Solids, Solid
% Moisture, Solid | | | | | | * In Description = Dry Wgt. | | | CUSTOMER: SCS Engineers, Inc. | Customer
Date Samp
Time Samp
Sample Ma | TEST METHOD | 8015B MDRO | Method | | | | | | | Data File: 09110609 089.d Report Date: 20-Sep=2006 14:36 ## STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 089.d 248531-14 Client Smp ID: SB1155=3 15-SEP-2006 05:37 errors Data file : Lab Smp Id: Inj Date : werners 091106,dro09,248531-14 Inst ID: inst09.i Jpěrator Šmp Info Misc Info dc= HP5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 20-Sep-2006 14:34 werners Ouant Type: ESTD 11-SEP-2006 18:05 Cal File: 09110609_007.d Comment Method Meth Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro..sub Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|--| | DF
Uf
Vt
Vi
Ws
M | 1.000
2500.000
2500.000
15.339
16.300 | Dilution Factor
ng unit correction factor
Volume of final extract (ul)
Volume injected (ul)
Weight of sample extracted (g)
% Moisture | | | | | | | | CUNCENTRATIONS | | | |----|--------------------------------|--------|--------|--------|----------|----------------|----------|--| | | | | | | | ON-COLUMN | FINAL | | | Со | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | | | 20 E | | ===== | | | - | | | \$ | 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 1189233 | 14.2092 | 2.767 | | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1677309 | 16.6018 | / 3.233 | | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 14584371 | 178.578 | 34.773 | | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 14584371 | 178.578 | 34.773 / | | | | • - | | | | | | | | - STL Chicago is part of Severn Trent Laboratories, Inc. | S U L T S Date:09/20/2006 | ATTN: David Brewer | mple ID: 248531-15
: 09/07/2006
: 10:00 | RL DILUTION UNITS BATCH DT DATE/TIME | 1 5.1 1.00000 mg/Kg 189555 09/15/06 0613 | 10 0.10 1 % 188899 09/09/06 1945
10 0.10 1 % 188899 09/09/06 1945 | | |---------------------------|-------------------------------|---|--------------------------------------|---|--|-----------------------------| | LABORATORY TEST RES | PROJECT; GSA - SLOP | Laboratory Sample ID: Date Received Time Received | SAMPLE RESULT Q FLAGS MDL | 21 2.1 | 79.9 0.10 | Page 17 | | Job Number: 248531 | CUSTOMER: SCS Engineers, Inc. | Customer Sample ID: SB1165-4 Date Sampled: 09/06/2006 Time Sampled: 11:00 Sample Matrix: Soil | PARAMETER/TEST DESCRIPTION | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | % Solids Determination
% Solids, Solid
% Moisture, Solid | * In Description = Dry Wgt. | | , | CUSTOMER: SCS E | Customer
Date Samp
Time Samp
Sample Ma | TEST METHOD | 8015B MDRO | Method | | Data File: 09110609 090.d Report Date: 20-Sep=2006 14:36 ## STL Chicago Data file : Lab Smp Id: Inj Date : Opĕrator Smp Info 1isc Info Comment Method : Meth Date : Cal Date : Als bottle: Als bottle: 90 Als bottle: 90 Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.472
20.100 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | Compounds | | RT | EXP RT | DLT RT | RESPONSE | ON-COLUMN | FINAL
(ma/Ka) | |-----------|--------------------------------|--------|---------|--------|----------|-----------|------------------| | | | === | | - | | | | | \$ | 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 1158077 | 13.8370 | (2.798) | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1584901 | 15.6871 | 3.172 | | S | 14 DRO (C10-C32) | 4.256- | -18.151 | | 8647161 | 105.880 | 21.412 | | S | 15 Diesel Range Organics (DRO) | 4.256- | -18.151 | | 8647161 | 105.880 | 21.412 | | | | | | | | | | CONCENTRATIONS STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | Method % Solids Determination % Solids, Solid % Solids, Solid % Moisture, Solid | TEST METHOD PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1175-4 Date Sampled: 09/06/2006 Time Sampled: 11:45 Sample Matrix: Soil | Job Number: 248531 | |-----------------------------|---|--|---|------------------------------------| | C. | N.a. | RIPTION SAMPLE RESULT | | LABORA | | Page 18 | 2.1
2.1
2.1
0.10
0.10 | ESULT Q FLAGS MDL | Laboratory Sample
Date Received
Time Received | ATORY TEST RESU | | | 5.2 1.00000
0.10 1
0.10 1 | RL DILUTION | e ID: 248531-16
: 09/07/2006
: 10:0C | LTS | | Ar r · | mg/Kg : 189555 09/
% 188899 09/
% 188899 09/ | UNITS BATCH DT D | | Date:09/20/2006 ATTN: David Brewer | | STL Chicago | 09/15/06 0649 san
09/09/06 1948 clb
09/09/06 1948 clb | DATE/TIME TECH | | | Data File: 09110609 091.d Report Date: 20-Sep=2006 14:36 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 091.d 248531-16 Client Smp ID: SB1175-4 15-SEP-2006 06:49 Data file : Lab Smp Id: Inj Date : werners 091106,dro09,248531-16 - Inst ID: inst09:1 Opërator Smp Info Misc Info C= P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:34 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d Comment Method Meth Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2500.000
2500.000
15.228
21.100 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTE | RATIONS | | |----|--------------------------------|--------|--------|--------|----------|-----------|---------|----------------| | | | | | | | ON-COLUMN | FINAL | | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/u1) | (mg/Kg) | | | == | | men | - | | | | | _ | | \$ | 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 1085880 | 12.9744 | 2.700 |) | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1527733 | 15.1213 | 3.146 | | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 3460176 | 42.3681 | 8.816 | | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 3460176 | 42.3681 | 8.816 | and the second | STL Chicago is part of Severn Trent Laboratories, Inc. | TEST RESULTS Date: 09/20/2006 | GSA - SLOP | Laboratory Sample ID: 248531-17 Date Received: 10:00 Time Received: 10:00 | FLAGS MDL RL DILUTION UNITS BATCH DT DATE/TIME TECH | 2.0 4.8 1.00000 mg/kg 189555 09/15/06 0726 san | 0.10 0.10 1 % 188899 09/09/06 1951 ctb 0.10 0.10 1 % 188899 09/09/06 1951 ctb | Page 19 | |-------------------------------
--|---|---|--|--|-----------------------------| | Job Number: 248531 | CUSTOMER: SCS Engineers, Inc. PROJECT: | Customer Sample ID: SB1185-2 Date Sampled: 09/06/2006 Time Sampled: 13:10 Sample Matrix: Soil | | 8015B MDRO TPH - Diesel Range Organics (DRO)
 Diesel Range Organics (DRO), 3541 Solid* | Method % Solids Determination 85.8 % Solids, Solid 85.8 % Moisture, Solid 14.2 | * In Description = Dry Wgt. | Data File: 09110609 092.d Report Date: 20-Sep=2006 14:36 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 092.d 248531-17 Client Smp ID: SB1185=2 15-SEP-2006 07:26 Data file : Lab Smp Id: Inj Date : werners 091106,dro09,248531-17 ----Inst ID: inst09:i Įpērator mp Info isc Info Date Date : bottle: oil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Compound Sublist: 8015dro.sub Processing Host: CHI-GROUPER | Name | Value | Description | |---------------------------------|---|--| | DF
Uf
Vt
Vi
Ws
M | 1.000
2500.000
2500.000
15.203
14.200 | Dilution Factor
ng unit correction factor
Volume of final extract (ul)
Volume injected (ul)
Weight of sample extracted (g)
% Moisture | | | | | | | | CONCENTR | ATIONS | | |----|--|--------|--------|--------|----------|-----------|---------|----------------| | | | | | | | ON-COLUMN | FINAL | | | Со | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | | ************************************** | | | ***** | | | | | | \$ | 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 1179846 | 14.0971 | 2.702 | 1 | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1611545 | 15.9509 | 3.057 | 1 | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 44949761 | 550.387 | 105.48 | , | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 44949761 | 550.387 | 105.48 | | | | | | | | | | | Market Control | , % Laboratory Sample ID: 248531-18 Date Received...... 09/07/2006 Time Received...... 10:00 PROJECT: GSA - SLOP Q FLAGS ш BORATOR SAMPLE RESULT 86.8 13.2 22 _ A TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3547 Solid* PARAMETER/TEST DESCRIPTION Solids Determination Solids, Solid Moisture, Solid Customer Sample ID: SB1185-5 Date Sampled....: 09/06/2006 Time Sampled....: 13:25 Sample Matrix...: Soil Job Number: 248531 CUSTOMER: SCS Engineers, Inc. TEST METHOD 8015B MDRO Method TECH DATE/TIME 占 BATCH UNITS DILUTION Z MDE David Brewer ATTN: Date: 09/20/2006 TINS ᄣ 04 S STL Chicago is part of Severn Trent Laboratories, Inc. 09/15/06 1520 san 189555 mg/Kg 1,00000 4.7 1.9 09/09/06 1953 ctb 09/09/06 1953 ctb 188899 188899 % % 0.10 0.10 | | ogsoidO JTZ | |---|------------------------------| | | | | | | | Invest 1 | | | | *** | | een ee | | | | | | | | | | Page 20 | | *** | Pag | | | | | | * In Description == Dry Wgt. | | | | Data File: 09110609 105.d Report Date: 20-Sep=2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 105.d 248531-18 Client Smp ID: SB1185-5 15-SEP-2006 15:20 errners Data file : Lab Smp Id: Inj Date : Inst ID: inst09:i werners 091106,dro09,248531-18)pĕrator Smp Info 1isc Info Comment Tethod Teth Date Lal Date Date : bottle:)il Factor: 1.0 Integrator: HP Larget Version: Compound Sublist: 8015dro.sub Processing Host: CHI-GROUPER | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
WS
M | 1.000
2.000
2500.000
2.000
15.310
13.200 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTRA | ATIONS | | |----|--------------------------------|--------|--------|--------|----------|-----------|----------|------| | | | | | | | ON-COLUMN | FINAL | | | Сс | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | == | | === | | | | | | **** | | \$ | 8 2-Fluorobiphenyl | 7.521 | 7.534 | -0.013 | 1167718 | 13.9522 | /2.625 | 1 | | \$ | 13 o-Terphenyl | 10.929 | 10.941 | -0.012 | 1726278 | 17.0865 | / 3.214 | 1 | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 9390426 | 114.981 | / 21.631 | | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 9390426 | 114.981 | 21.631 | | STL Chicago is part of Severn Trent Laboratories, Inc. TECH 09/09/06 1956 clb 09/09/06 1956 clb 09/15/06 1556 san STL Chicago DATE/TIME David Brewer 5 Date: 09/20/2006 BATCH 188899 188899 189555 ATTN UNITS mg/Kg 24 24 DILUTION 1.00000 Laboratory Sample ID: 248531-19 Date Received...... 09/07/2006 Time Received...... 10:00 0.10 5.2 ~ RESULT 0.10 2.1 MDL PROJECT: GSA - SLOP တ ш Q FLAGS Page 21 LABORATORY SAMPLE RESULT 9.3 78.8 21.2 TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3541 Solid* PARAMETER/TEST DESCRIPTION * In Description = Dry Wgt. % Solids Determination % Solids, Solid % Moisture, Solid Customer Sample ID: SB1195-3 Date Sampled.....: 09/06/2006 Time Sampled.....: 14:05 Sample Matrix....: Soil Job Number: 248531 CUSTOMER: SCS Engineers, Inc. TEST METHOD 8015B MDRO Method Data File: 09110609 106.d Report Date: 20-Sep=2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_106.d 248531-19 Client Smp ID: SB1195-3 15-SEP-2006 15:56 Data file : Lab Smp Id: Inj Date : Inst ID: inst09.i werners 091106.dro09.248531-19 gpĕrator. Smp Info Misc Info dc= HP5890 FID XTi-5 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 20-Sep-2006 14:38 werners Quant Type: ESTD 11-SEP-2006 18:05 Cal File: 09110609_007.d 106 1 00000 HP Genie Compound Sublist: 8015dra ion: 4.04 Comment Method Meth Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
WS
M | 1.000
2.000
2500.000
2.000
15.374
21.200 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | CONCENTRA | ALIONO | | |----------------------------------|--------|---------|--------|-----------------------------|--|---------|---------------| | | | | | | ON-COLUMN | FINAL | | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | | == | **** | ===== | THE COLUMN SEC SEC. THE THE | ************************************** | | _ | | \$ 8 2-Fluorobiphenyl | 7.521 | 7.534 | -0.013 | 975730 | 11.6583 | 2.406 | | | \$ 13 o-Terphenyl | 10.927 | 10.941 | -0.014 | 1499678 | 14.8436 | 3.063 |) | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 3680052 | 45.0604 | 9.299 | | | S 15 Diesel Range Organics (DRO) | 4.256- | -18.151 | | 3680052 | 45.0604 | 9,299 | \mathcal{I} | | | | | | | | | • | CONCENTRATIONS STL Chicago is part of Severn Trent Laboratories, Inc. | | | | TECH | san | 413
413
413 | | STL Chicago | |--------------------|-------------------------------|---|----------------------------|---|--
--|-----------------------------| | | (e) | | DATE/TIME | 09/15/06 1632 san | 09/09/06 1959
09/09/06 1959 | | | | Date:09/20/2006 | David Brewer | | ВАТСН DT | 189555 | 188899
188899 | 7 | - | | Date:09 | ATTN: | | UNITS | mg/Kg | : % % | in the second of | pal e | | | | | DILUTION | 1.00000 | har har | | | | S | | 248531-20
09/07/2006
10:00 | N. | 5.0 | 0.10 | e de la companya l | | | T RESULTS | 4(| Laboratory Sample ID:
Date Received:
Time Received: | MOL | 2.0 | 0.10 | | | | T E S | GSA - SLOP | Labo
Date
Time | Q FLAGS | | | | Page 22 | | ABORATORY | PROJECT: | | SAMPLE RESULT 0 | 12 | 81.1 | | 98 | | Job Number: 248531 | Engineers, Inc. | Customer Sample ID: SB1195-4 Date Sampled: 09/06/2006 Time Sampled: 14:25 Sample Matrix: Soil | PARAMETER/TEST DESCRIPTION | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | % Solids Determination
% Solids, Solid
% Moisture, Solid | | * In Description = Dry Wgt. | | مل | CUSTOMER: SCS Engineers, Inc. | Customer (Date Sample Time Sample Mark | TEST METHOD | 8015B MDRO 7 | Method | | | Data File: 09110609 107.d Report Date: 20-Sep=2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_107.d 248531-20 Client Smp ID: SB1195-4 15-SEP-2006 16:32 werners Data file : Lab Smp Id: Inj Date : werners 091106, dro09, 248531-20 Inst ID: inst09:i Opërator Smp Info Misc Info U-HP5890 FID XTi-5 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 20-Sep-2006 14:38 werners Quant Type: ESTD 11-SEP-2006 18:05 Cal File: 09110609_007.d Comment Method Meth Date Date : bottle: 1,00000 HP Genie on: 4,04 Compound Sublist: 8015dro.sub arget Version: Processing Host: CHI-GROUPER Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.579
18.900 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTA | (ATTON2 | |----|--------------------------------|--------|--------|--------|----------|-----------|---------| | | | | | | | ON-COLUMN | FINAL | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | | | ****** | | | | | | \$ | 8 2-Fluorobiphenyl | 7.521 | 7.534 | -0.013 | 1026476 | 12.2646 | 2.427 | | \$ | 13 o-Terphenyl | 10.928 | 10.941 | -0.013 | 1617473 | 16.0095 | (3.168 | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 5097642 | 62.4181 | 12.351 | | \$ | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 5097642 | 62.4181 | 12.351 | | | | | | | | | | CONCENTRATIONS STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | | Method % Solids Determination % Solids, Solid % Moisture, Solid | 8015B MDRO TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3541 Solid* | TEST METHOD PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1215-3 Date Sampled: 09/06/2006 Time Sampled: 15:10 Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | |-----------------------------|-----------|---|---|--|---|-------------------------------|--------------------| | Page 23 | | 19.9
19.9 | 9.9 | SAMPLE RESULT Q FLAGS | | PROJECT: GSA — SLOP | LABORATORY TE | | | | 0.10
0.10 | 2.1 | MDL | Laboratory Sample ID:
Date Received:
Time Received: | SLOP | STRESUL | | | | 0.10 | 5.2 | R | ID: 248531-21
: 09/07/2006
: 10:00 | | 7 S | | | | → | 1.00000 | NOTITION | | | | | | 4077 4 14 | % % | mg/Kg | STINU | | ATTN: | Date:0 | | | | 188859
188859 | 189555 | ВАТСН | | David Brewer | Date:09/20/2006 | | | | 09/08/06 1259 Lp
09/08/06 1259 Lp | 09/15/06 1708 | DATE/TIME | | rewer | 6 | | ago | | 55 |)8
san | TECH | | | | Data File: 09110609 108.d Report Date: 20-Sep-2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 108.d 248531-21 Client Smp ID: SB1215-3 15-SEP-2006 17:08 -Data file Lab Smp Id Inj Date werners 091106.dro09,248531-21 Inst ID: inst09.i Uperator Smp Info Misc Info P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:38 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d Comment Method Meth Date Date bottle Cal Date : II-SEP-2006 18:05 Als bottle: 108 Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.121
19.900 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCERNIA | CHOILE | |----|--------------------------------|--------|------------------|--------|----------|-----------|---------| | | | | | | | ON-COLUMN | FINAL | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | | 0000 | OC RESIDENCE AND | ====== | *=*==== | ======= | | | \$ | 8 2-Fluorobiphenyl | 7.520 | 7.534 | -0.014 | 994315 | 11.8803 | 2.452 | | \$ | 13 o-Terphenyl | 10.927 | 10.941 | -0.014 | 1858459 | 18.3948 | 3.797 | | S | 14 DRO (C10-C32) | 4.256- | -18.151 | | 3902820 | 47.7881 | 9.864 | | S | 15 Diesel Range Organics (DRO) | 4.256 | 18.151 | | 3902820 | 47.7881 | 9.864 | | | | | | | | | | CONCENTRATIONS STL Chicago is part of Severn Trent Laboratories, Inc. | - | | | | | | , | | |-----------------------------
--|--|---|----------------------------|---|--------------------------|--------------------| | | | Method | 8015B MDRO | TEST METHOD | Customer
Date San
Time San
Sample M | CUSTOMER: SCS Engineers, | | | * In Description = Dry Wgt. | | % Solids Determination
% Solids, Solid
% Moisture, Solid | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1225-2 Date Sampled: 09/06/2006 Time Sampled: 16:20 Sample Matrix: Soil | Engineers, Inc. | Job Number: 248531 | | Page 24 | | 81.9
18.1 | ₩ | SAMPLE RESULT Q FLAGS | | PROJECT: GSA - | LABORATORY TE | | | | 0.10
0.10 | 2.0 | MD. | Laboratory Sample ID:
Date Received:
Time Received: | SLOP | ST RESULTS | | gerio di Mari | ·. | 0.10 | 5.0 | 7 | : 248531-22
: 09/07/2006
: 10:00 | | | | | | | 1.00000 | NOTITU | | | | | ned. | t tened to the original and the second of th | % % | mg/Kg | STINU | | ATTN: | Date:09 | | | | 188859
188859 | 189555 | BATCH DT | | David Brewer | Date:09/20/2006 | | | | 09/08/06 1301
09/08/06 1301 | 09/15/06 1745 | DATE/TIME | | er | | | STL Chicago | | - 1 1 | 5 san | 1E CH | | | | Data File: 09110609 109.d Report Date: 20-Sep=2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 109.d 248531-22 Client Smp ID: SB1225-2 15-SEP-2006 17:45 werners Data file : Lab Smp Id: Inj Date : Opërator Smp Info ners 106,dro09,248531-22 Inst ID: inst09.i 4i'sc Info omment ieth_Date Date : bottle: Cal Date : II-SEP-2006 18:09 Als bottle: 109 Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.283
18.100 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTRA | ATIONS | | |----------|--|--------|--------|--------|----------|-----------|---------|---| | | | | | | | ON-COLUMN | FINAL | | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | HE S. S. | ************************************** | == | | | | mm===== | | | | \$ | 8 2-Fluorobiphenyl | 7.521 | 7.534 | -0.013 | 1149696 | 13.7368 | 2.744 | | | \$ | 13 o-Terphenyl | 10.927 | 10.941 | -0.014 | 1668251 | 16.5121 | / 3.298 | | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 7386089 | 90.4390 | 18.064 | , | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 7386089 | 90.4390 | 18.064 | | STL Chicago is part of Severn Trent Laboratories, Inc. | | | Method | 8015B MDRO | TEST METHOD | Custome
Date Sa
Time Sa
Sample! | CUSTOMER: SCS | 1 | |-----------------------------|--|---|--|----------------------------|--|-------------------------------|--------------------| | * In Description = Dry Wgt. | | <pre>% Solids Determination % Solids, Solid % Moisture, Solid</pre> | TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3541 Solid* | PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB12254 Date Sampled: 09/06/2006 Time Sampled: 16:40 Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | | | | 77.9
22.1 | à | SAMPLE RESULT | | PROJECT | LABORATOR | | Page 25 | | | | Q FLAGS | 1 D C | PROJECT: GSA - SLOP | Y TE | | | | 0.10
0.10 | 2.1 | NDL JGM | Laboratory Sample ID:
Date Received
Time Received |)LOP | ST RESUL | | | | 0.10
0.10 | ,
N | 7 L | .D: 248531-23
.: 09/07/2006
.: 10:00 | | S | | | | e | 1.00000 | NOTTUTE | | | | | | | >< >< | mg/Kg | SITNU | | ATTN: | Date | | | | 188859
188859 | 189555 | BATCH | | David Brewer | Date:09/20/2006 | | | | 09/08/06 1303
09/08/06 1303 | 09/15/06 1821 | DT DATE/TIME | | 3newer | Ж | | ago | | 03
(p | 21 san | EC H | | | | Data File: 09110609 110.d Report Date: 20-Sep=2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 110.d 248531-23 Client Smp ID: SB1225-4 15-SEP-2006 18:21 Data file : Lab Smp Id: Inj Date : werners 091106,dro09,248531-23 Inst ID: inst09:i yperator smp lnto Misc Info P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:38 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d omment Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub Concentration Formula: Amt \star DF \star (Uf \star Vt/((Vi \star Ws \star 1000) \star (100-M)/100)) | Name | Value | Description | |----------------------------|---|---| | DF
Uf
Vt
Vi
Ws | 1.000
2.000
2500.000
2.000
15.359
22.100 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTRA | ATIONS | |----|--------------------------------|--------|--------|--------|----------|-----------|------------------------| | | | | | | | ON-COLUMN | FINAL | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | == | | | ***** | | - | | | | \$ | 8 2-Fluorobiphenyl | 7.520 | 7.534 | -0.014 | 960410 | 11.4752 | / ¹ 2.398 \ | | \$ | 13 o-Terphenyl | 10.927 | 10.941 | -0.014 | 1633900 | 16.1721 | 3.379 | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 4276400 | 52.3624 | 10.941 | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 4276400 | 52.3624 | 10.941 | | | | | | | | | | STL Chicago is part of Severn Trent Laboratories, Inc. | | Method | 8015B MDRO | TEST METHOD | Customer
Date Samp
Time Samp
Sample Ma | CUSTOMER: SCS Engineers, Inc | £ | |-----------------------------|--|--|----------------------------
--|------------------------------|--------------------| | * In Description = Dry Wgt. | % Solids Determination
% Solids, Solid
% Moisture, Solid | TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3541 Solid* | PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1135-5 Date Sampled: 09/05/2006 Time Sampled: 17:30 Sample Matrix: Soil | ingineers, Inc. | Job Number: 248531 | | - | 79.8
20.2 | 4.7 | SAMPLE RESULT | | PROJECT: GSA - | ABORATORY | | Page 28 | | ص | Q FLAGS | Lat
Tin | | T E S | | | 0.10
0.10 | 2.0 | 5 | Laboratory Sample ID: 248531-26 Date Received 09/07/2006 Time Received 10:00 | SLOP | TRESUL | | = + <u> </u> | 0.10
0.10 | 5.0 | | 0: 248531-26
.: 09/07/2006
.: 10:00 | | T 8 | | | Eur Eur | 1.00000 | DILUTION | | | | | | % %
: | mg/Kg | UNITS | in the second se | ATTN: | Date:0 | | | 188859
188859 | 189555 | ватсн | | David Brewer | Date:09/20/2006 | | | 09/08/06 1308
09/08/06 1308 | 09/15/06 1857 san | DT DATE/TIME | | ewer | | | ago | 5-5 | san | TE CH | | | | Data File: 09110609 111.d Report Date: 20-Sep=2006 14:42 ### STL Chicago SW846 Method 8015 CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_111.d 8531-26 Client Smp ID: SB1135-5 -SEP-2006 18:57 Data file Lab Smp Id Inj Date ners 106,dro09,248531-26 Inst ID: inst09.i Operator mp Info isc Info 5890 FID XTi-5 CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m J-Sep-2006 14:38 werners Quant Type: ESTD J-SEP-2006 18:05 Cal File: 09110609_0 omment Quant Type: ESTD Cal File: 09110609_007.d Date bottle 00000 Factor: Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.903
20.200 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTRA | 41 10112 | | |-----|--------------------------------|--------|--------|--------|----------|-----------|----------|--| | | | | | | | ON-COLUMN | FINAL | | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | === | | == | | | ======== | | - | | | \$ | 8 2-Fluorobiphenyl | 7.520 | 7.534 | -0.014 | 1161196 | 13.8742 | 2.733 | | | \$ | 13 o-Terphenyl | 10.926 | 10.941 | -0.015 | 1801565 | 17.8317 | 3.513 | | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 1963926 | 24.0473 | 4.737(a) | | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 1963926 | 24.0473 | 4.737(a) | | | | | | | | | | | | #### QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). COMPENIEDATIONS STL Chicago is part of Severn Trent Laboratories, Inc. | | · | Method | 8015B MDRO | TEST METHOD | Custome:
Date San
Time San
Sample M | CUSTOMER: SCS | | |-----------------------------|--|--|--|----------------------------|---|-----------------|---| | * In Description = Dry Wgt. | | % Solids Determination
% Solids, Solid
% Moisture, Solid | TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO), 3541 Solid* | PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1145-3 Date Sampled: 09/05/2006 Time Sampled: 18:00 Sample Matrix: Soil | Engineers, Inc. | Job Number: 248531 | | | | | * | | | | L A | | | | 78.4
21.6 | 8.0 | SAMPLE RESULT | | PROJECT: GSA | BORATOR | | Page 29 | | | | Q FLAGS | Labo
Dat
Time | : GSA - SLOP | ~
Т
гя
S | | | | 0.10
0.10 | 2.0 | MDL | Laboratory Sample ID:
Date Received:
Time Received: | ŷ. | TRESUL | | | · · · · · · · · · · · · · · · · · · · | 0.10 | ن ا
نام | R. | D: 248531-27
.: 09/07/2006
.: 10:00 | | IJ. | | | | | 1.00000 | DILUTION | | | | | ar go | terrore to the control of contro | × × | mg/Kg | STINU | A | ATTN: | Date:[| | | | 188859
188859 | 189555 | ВАТСН | | David Brewer | Date:09/20/2006 | | | | 09/08/06 1310
09/08/06 1310 | 09/15/06 1933 | DT DATE/TIME | | ewer | - | | STL Chicago | | 55 | san | HO3T | | | *************************************** | Data File: 09110609 112.d Report Date: 20-Sep=2006 14:42 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 112.d 248531-27 Client Smp ID: SB1145-3 15-SEP-2006 19:33 werners Data file : Lab Smp Id: Inj Date : Inst ID: inst09:i Operator Smp Info Misc Info werners 091106,dro09,248531-27 P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:38 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d Comment Method Date : pottle: Cal Date : II-SEP-2006 18:05 Als bottle: I12 Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: 8015dro.sub. | Name | Value | Description | |----------------------------|---|---| | DF
Uf
Vi
Vi
Ws | 1.000
2.000
2500.000
2.000
15.908
21.600 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CUNCENTRA | 411UN2 | | |----|--------------------------------|--------|--------|--------|----------
-----------|-------------|---| | | | | | | | ON-COLUMN | FINAL | | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | -= | | == | | | | | <i>f===</i> | | | \$ | 8 2-Fluorobiphenyl | 7.520 | 7.534 | -0.014 | 1229209 | 14.6869 | 2.944 | | | \$ | 13 o-Terphenyl | 10.926 | 10.941 | -0.015 | 1655031 | 16.3813 | 3.284 |) | | S | 14 DRO (C10-C32) | 4.256~ | 18.151 | | 3262139 | 39.9433 | 8.007 | | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 3262139 | 39.9433 | 8.007 | | | | | | | | | | | | # STANDARDS DATA #### **DRO/Diesel Fuel Standard Concentrations** | Calibration Standards | Diesel
25 | Diesel
100 | Diesel
250 | Diesel
500 | Diesel
750 | Diesel
1000 | *** | |-----------------------|--------------|---------------|---------------|---------------|---------------|----------------|-------| | Diesel Fuel | 25 | 100 | 250 | 500 | 750 | 1000 | μg/mL | | 2-Fluorobiphenyl | 1.0 | 5.0 | 10 | 25 | 35 | 50 | | | o-Terphenyl | 1.0 | 5.0 | 10 | 25 | 35 | 50 | | #### **Surrogate Concentrations** | | • | |---------------------------------|------------------| | 2-Fluorobiphenyl
o-Terphenyl | 200 μg/mL
200 | | | · · | #### **Spike Concentration** | Diesel Fuel | $4000~\mu g/mL$ | |-------------|-----------------| #### C8-C40 RT Standard | C8, C10, C12, C14, C16, C18, C20, | | |------------------------------------|----------------------------| | C22, C24, C26, C28, C30, C32, C34, | | | C36, C38, C40 | 10 μg/mL each | | 2-Fluorobiphenyl | $10 \cdot \mu \text{g/mL}$ | | o-Terphenyl | 10 μg/mL | ### FORM 6 TEPH INITIAL CALIBRATION DATA Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date(s): 09/11/06 09/11/06 Column: XTI-5 ID: 0.53 (mm) Calibration Time(s): 1504 1805 LAB FILE ID: CF25: 09110609 007CF100: 09110609 00CF250: 09110609 00 CF500: 09110609_00CF750: 09110609 00 **COMPOUND** CF25 CF100 CF250 CF500 CF750 Diesel Range Organics (DRO)_ DRO (C10-C32) 88765 88765 79626 79626 2-Fluorobiphenylo-Terphenyl (b) (6) FORM VI TEPH Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date(s): 09/11/06 09/11/06 Column: XTI-5 ID: 0.53 (mm) Calibration Time(s): 1504 1805 CF1000; 09110609 0 | COMPOUND | CF1000 | CURVE | avCF OR A1 | %RSD
OR R^2 | |------------------------------|--------|-------|------------|----------------| | Diesel Range Organics (DRO)_ | 73876 | AVRG | 81669 | 10.8 | | DRO (C10-C32) | 73876 | AVRG | 81669 | 10.8 | | 2-Fluorobiphenyl | 71381 | AVRG | 83694 | 9.1 | | o-Terphenyl | 83704 | AVRG | 101032 | 11.6 | (b) (6) FORM VI TEPH ## TEPH CONTINUING CALIBRATION CHECK Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date: 09/11/06 Time: 1842 Init. Calib. Times: 1504 1805 GC Column: XTI-5 ID: 0.53 (mm) | COMPOUND | CF | CF250 | NA | %D | MAX
%D | |--|-----------------|-------------------------|------|------------|--------------| | Diesel Range Organics (DRO)_
DRO (C10-C32)_ | 81669
81669 | 75247
75247
75247 | 0.01 | 7.9
7.9 | 15.0
15.0 | | 2-Fluorobiphenyl
o-Terphenyl | 83694
101032 | 78128
94807 | 0.01 | 6.6
6.2 | 15.0
15.0 | (b) (6) FORM VII TEPH STANDARD DIESELCCV3 Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELCCV3 Date/Time Analyzed: 09/11/06 1842 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //CHI-Chromis/E/chem/inst09.i/091106c32.b/09110609_008.d/ | ANALYTE | PEAK | RT | FROM | NDOW
TO | CONCENTRATION | MEAN
CONCENTRATION | N/A | |-----------------------|----------|----------|----------|------------|---------------|--|---------| | Diesel Range | 1-2004-0 | 11.20 | 4.26 | 18.15 | 230.34 | 230.34 * | ر ز ر ر | | DRO (C10-C32 | 1 120345 | 11.20 | 4.26 | 18.15 | 230.34 | | | | XTI-5 | 45 | | | | | 230.34 | | | 2-Fluorobiph
XTI-5 | 12345 | 7.53
 | 7.50
 | 7.56
 | 9.335 | 9.335 | | | o-Terphenyl
XTI-5 | 12345 | 10.94 | 10.91 | 10.97 | 9.384 | The state of s | | | //// V | 5 | | | | | 9.384 | | At least 3 peaks are required for identification of multicomponent analytes. ### FORM 3 WATER TEPH LAB CONTROL SAMPLE Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Matrix Spike - Sample No.: DIESELSSV | COMPOUND | SPIKE
ADDED
(mg/L) | SAMPLE
CONCENTRATION
(ug/L) | LCS
CONCENTRATION
(mg/L) | LCS
RÊC # | LIMITS
REC. | |-------------------------|--------------------------|-----------------------------------|--------------------------------|--------------|----------------| | Diesel Range Organics (| 1.250 | | 1.181 | 94 | 85-115 | # Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 1 outside limits COMMENTS: FORM III TEPH STANDARD DIESELSSV Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELSSV Date/Time Analyzed: 09/11/06 1918 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //CHI-Chromis/E/chem/inst09.i/091106c32.b/09110609_009.d | ANALYTE | PEAK | RT | RT WI
FROM | WOOM
TO | CONCENTRATION | CONCENTRATION | N/A | |-----------------------|-------|-------|--|------------|---------------|---------------|-----| | Diesel Range | 1 2 2 | 11.20 | 4.26 | 18.15 | 1.181 | | | | XTI-5 | 2345 | | ************************************** | | | 1.181 | | | DRO (C10-C32
XTI-5 | 12345 | 11.20 | 4.26 | 18.15 | 1.181 | | | | | 545 | | | | | 1.181 | | | 2-Fluorobiph
XTI-5 | 12345 | 7.53 | 7.50 | 7.56 | 0.04935 | | | | | 5 | | | | | 0.04935 | | | o-Terphenyl
XTI-5 | 12345 | 10.94 | 10.91 | 10.97 | 0.04755 | | | | | 5 | | | | | 0.04755 | 0 | At least 3 peaks are required for identification of multicomponent analytes. ## TEPH CONTINUING CALIBRATION CHECK Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date: 09/15/06 Time: 0312 Init. Calib. Times: 1504 1805 GC Column: XTI-5 ID: 0.53 (mm) | COMPOUND | CF | CF250 | NA | %D | MAX
%D | |------------------------------|--------|-------|------|-----|-----------| | Diesel Range Organics (DRO)_ | 81669 | 80070 | 0.01 | 2.0 | 15.0 | | DRO (C10-C32)_ | 81669 | 80070 | 0.01 | 2.0 | 15.0 | | 2-Fluorobiphenyl | 83694 | 81357 | 0.01 | 2.8 | 15.0 | | o-Terphenyl | 101032 | 99856 | | 1.2 | 15.0 | DIESELCCV3 Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELCCV3 Date/Time Analyzed: 09/15/06 0312 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //GHI-Chromis/E/chem/inst09.i/091106c32.b/09110609_085.d | ANALYTE | PEAK | RT | FROM | NDOW
TO | CONCENTRATION | MEAN CONCENTRATION | N/A | |-----------------------|-------|----------|----------|------------|---------------|--------------------|-----| | Diesel Range | 12345 | 11.20 | 4.26 | 18.15 | 245.10 | 045 10 | | | DRO (C10-C32 | | 11.20 | 4.26 | 18.15 | 245.10 | 245.10 | | | XTI-5 | 2345 | | | | | 245.10 | | | 2-Fluorobiph
XTI-5 | 12345 | 7.52
 | 7.50
 | 7.56
 | 9.721 | 0.701 | | | o-Terphenyl | | 10.93 | 10.91 | 10.97 | 9.884 | 9.721 | | | XTI-5 | 12345 | | | | | 9.884 | | ## TEPH CONTINUING CALIBRATION CHECK Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date: 09/15/06 Time: 0841 Init. Calib. Times: 1504 1805 GC Column: XTI-5 ID: 0.53 (mm) | COMPOUND | CF | CF500 | NA NA | %D | MAX
%D | |------------------------------|--------|--------|-------|-----|-----------| | Diesel Range Organics (DRO)_ | 81669 | 82747 | 0.01 | 1.3 | 15.0 | | DRO (C10-C32) | 81669 | 82747 | | 1.3 | 15.0 | | 2-Fluorobiphenyl | 83694 | 85896 | 0.01 | 2.6 | 15.0 | | o-Terphenyl | 101032 |
104708 | | 3.6 | 15.0 | DIESELCCV4 Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELCCV4 Date/Time Analyzed: 09/15/06 0841 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //CHI-Chromis/E/chem/inst09.i/091106c32.b/09110609_094.d | ANALYTE | PEAK | RT | FROM | NDOW
TO | CONCENTRATION | MEAN
CONCENTRATION | N/A | |--------------|-------|-------|-------|------------|---------------|-----------------------|--| | Diesel Range | 12345 | 11.20 | 4.26 | 18.15 | 506.60 | | | | XTI-5 | 5 | | | | | 506.60 | | | DRO (C10-C32 | 1 2 | 11.20 | 4.26 | 18.15 | 506.60 | | NAMA NAMA (AMANA AMANA A | | XTI-5 | 12345 | | | | | 506,60 | | | 2-Fluorobiph | 12345 | 7.52 | 7.50 | 7.56 | 25.658 | | | | XTI-5 | 5 | | | | | 25.658 | | | o-Terphenyl | 12345 | 10.93 | 10.91 | 10.97 | 25.910 | | | | XTI-5 | 545 | | | | | 25.910 | | ## TEPH CONTINUING CALIBRATION CHECK Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date: 09/15/06 Time: 1407 Init. Calib. Times: 1504 1805 GC Column: XTI-5 ID: 0.53 (mm) | COMPOUND | CF | CF250 | NA | %D | MAX
%D | |---|-----------------|----------------|--------------|------------|--------------| | Diesel Range Organics (DRO)_
DRO (C10-C32) | 81669
81669 | 79472
79472 | 0.01
0.01 | 2.7
2.7 | 15.0
15.0 | | 2-Fluorobiphenyl
o-Terphenyl | 83694
101032 | 82220
99260 | 0.01 | 1.8 | 15.0
15.0 | DIESELCCV3 Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELCCV3 Date/Time Analyzed: 09/15/06 1407 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //CHI-Chromis/E/chem/inst09.i/091106c32.b/09110609_103.d | | ANALYTE | PEAK | RT | FROM | NDOW
TO | CONCENTRATION | MEAN CONCENTRATION | N/A | |-------------|--------------|-------------|-------|-------|------------|---------------|--------------------|--| | | Diesel Range | 12345 | 11.20 | 4.26 | 18.15 | 243.28 | | | | singer carl | VII-O | 5 | | | | | 243.28 | | | | DRO (C10-C32 | 1 2 | 11.20 | 4.26 | 18.15 | 243.28 | | ************************************** | | | XTI-5 | 12345 | | | | | 243.28 | | | | 2-Fluorobiph | 12345 | 7.52 | 7.50 | 7.56 | 9.824 | | | | | XTI-5 | 5
4
5 | | | N | | 9.824 | | | | o-Terphenyl | 1 2 | 10.93 | 10.91 | 10.97 | 9.824 | | | | - | XTI-5 | 12345 | | | | | 9.824 | | FORM 7 TEPH CONTINUING CALIBRATION CHECK Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date: 09/15/06 Time: 2046 Init. Calib. Times: 1504 1805 GC Column: XTI-5 ID: 0.53 (mm) | COMPOUND | CF | CF500 | NA | %D | MAX
%D | |---|-----------------|-----------------|--------------|------------|--------------| | Diesel Range Organics (DRO)_
DRO (C10-C32) | 81669
81669 | 78490
78490 | 0.01
0.01 | 3.9
3.9 | 15.0
15.0 | | 2-Fluorobiphenyl
o-Terphenyl | 83694
101032 | 83259
100782 | 0.01 | 0.5 | 15.0
15.0 | DIESELCCV4 Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELCCV4 Date/Time Analyzed: 09/15/06 2046 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //CHI-Chrom's/E/chem/inst09.i/091106c32.b/09110609_114.d | ANALYTE | PEAK | RT | RT WI
FROM | NDOW
TO | CONCENTRATION | MEAN
CONCENTRATION | N/A | |--------------|-------|----------------|---------------|------------|---------------|--|--| | Diesel Range | 1234 | 11.20 | 4.26 | 18.15 | 480.54 | | acontini. | | XTI-5 | 5 | , , | | | | 480.54 | matan sanggaran sa sanata | | DRO (C10-C32 | 1 2 | 11.20 | 4.26 | 18.15 | 480.54 | illustrate lauto etan Adole Petr sant Production de la companya especiale del companya especiale del companya especiale de la companya especiale de la companya especiale del companya especiale de la companya especiale del | | | XTI-5 | 12345 | | | | | 480.54 | | | 2-Fluorobiph | 1 2 | 7.52 | 7.50 | 7.56 | 24.870 | | gamaggi siakang-tamagi iganing kambat-amagai | | XTI-5 | 12345 | | | | | 24.870 | Ja - | | o-Terphenyl | 1 2 | 10.93 | 10.91 | 10.97 | 24.938 | | <u></u> | | XTI-5 | 12345 | | | | | 24.938 | | # TEPH CONTINUING CALIBRATION CHECK Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Instrument ID: INST09 Calibration Date: 09/16/06 Time: 0024 Init. Calib. Times: 1504 1805 GC Column: XTI-5 ID: 0.53 (mm) | COMPOUND | CF | CF250 | NA | %D | MAX
%D | |------------------------------|--------|-------|------|-----|-----------| | Diesel Range Organics (DRO)_ | 81669 | 82888 | 0.01 | 1.5 | 15.0 | | DRO (C10-C32) | 81669 | 82888 | 0.01 | 1.5 | 15.0 | | 2-Fluorobiphenyl | 83694 | 77007 | 0.01 | 8.0 | 15.0 | | o-Terphenyl | 101032 | 93874 | | 7.1 | 15.0 | Lab Name: STL CHICAGO Contract: DIESELCCV3 Lab Code: Case No.: SAS No.: SDG No.: 091106C32 Lab Sample ID: DIESELCCV3 Date/Time Analyzed: 09/16/06 0024 Instrument ID: INST09 GC Column: XTI-5 ID: 0.53(mm) Data File: //CHI-Chromis/E/chem/inst09.i/091106c32.b/09110609_120.d | ANALYTE | PEAK | RT | FROM | NDOW
TO | CONCENTRATION | MEAN
CONCENTRATION | N/A | |--------------|-----------------|-------|-------------|------------|---------------|-----------------------
--| | Diesel Range | 1234 | 11.20 | 4.26 | 18.15 | 253.73 | | | | XTI-5 | <u>4</u>
 5 | | | | AMARIAMATA | 253.73 | una massanggaranti oʻli birti magʻada | | DRO (C10-C32 | 1 2 | 11.20 | 4.26 | 18.15 | 253.73 | | AND THE PROPERTY OF PROPER | | XTI-5 | -2345 | | | | | 253.73 | | | 2-Fluorobiph | 12345 | 7.52 | 7.50 | 7.56 | 9.201 | | Sector HTA Sh. SHIRAK SHOWED A STATE OF THE SHIRAK SHOWED | | XTI-5 | 5 | | 4474044 | | | 9.201 | | | o-Terpheny1 | 1 2 | 10.92 | 10.91 | 10.97 | 9.292 | | | | XTI-5 | 12345 | | | | | 9.292 | | ## TEPH ANALYTICAL SEQUENCE Lab Name: STL CHICAGO Contract: Lab Code: Case No.: SAS No.: SDG No.: 248531 GC Column: XTI-5 ID: 0.53 (mm) Init. Calib. Date(s): 09/11/06 09/11/06 Instrument ID: INST09 THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW: | MEAN SURRO
 SI : 7.53 | GATE RT FROM 1
S2 : 1 | NITIAL CALI
10.94 | BRATION | | | |---|--|--|--|---|--| | CLIENT
SAMPLE NO. | SAMPLE ID | DATE
ANALYZED | TIME
ANALYZED | S1
RT # | \$2
RT # | | 01 RTSTDC8-C40 02 03 DIESEL2500 03 DIESEL2500 04 DIESEL2500 05 DIESEL2500 06 07 DIESEL2500 07 DIESEL2500 08 DIESEL2500 09 DIESEL2500 09 DIESEL2500 09 DIESEL2500 11 11 11 11 11 11 11 11 11 11 11 11 11 | RTSTDC8-C40 DIESEL1000 DIESEL250 DIE | 66666666666666666666666666666666666666 | 240463952832841739617062851736514
25566720432841739617062851736514
11556672890230
1156778890230
1156778890230
1156778890230 | 343333333333322222222222222222222222222 | 99999999999999999999999999999999999999 | S1 = 2-Fluorobiphenyl S2 = o-Terphenyl page 1 of 1 Data File: 09110609 001.d Report Date: 20-Sep=2006 14:45 #### STL Chicago ``` SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_001.d RTSTDC8-C40 Client Smp ID: RTSTDC8-C40 uerners - Data file : Lab Smp Id: Inj Date : Operator Smp Info Misc Info werners 091106,dro09,RTSTDC8-C40 Inst ID: inst09:i C= P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:45 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d Comment Method Meth Date Cal Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: dsl.sub ``` | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | CONCENTRATIONS | | | |--------------------|---|--|---|---|--|---|--| | Compounds | RT | EXP RT | DLT RT | RESPONSE | ON-COLUMN
(ng/ul) | FINAL
(mg/L) | | | 1 (8 | | 2 472 | | 804949 | | (a) | | | | 4.356 | 4.356 | 0.000 | 777961 | | (a) | | | 4 C12 | 6.108 | 6.108 | 0.000 | 738673 | | (a) | | | 8 2-Fluorobiphenyl | 7.534 | 7.534 | 0.000 | 717677 | 8.57498 | 0.04287 | | | 9 C14 | 7.633 | 7.633 | 0.000 | 737521 | | (a) | | | 11 C16 | 8.984 | 8.984 | 0.000 | 737282 | • | (a) | | | 12 C18 | 10.198 | 10.198 | 0.000 | 745026 | |
(a) | | | 13 o-Terphenyl | 10.941 | 10.941 | 0.000 | 811514 | 8.03226 | 0.04016(R) | | | 16 C20 | 11.296 | 11.296 | 0.000 | 743776 | | (a) | | | 17 C22 | 12.299 | 12.299 | 0.000 | 746038 | | (a) | | | 18 C24 | 13.219 | 13.219 | 0.000 | 768770 | | (a) | | | 19 C26 | 14.100 | 14.100 | 0.000 | 794181 | | (a) | | | 20 C28 | 15.097 | 15.097 | 0.000 | 804777 | | (a) | | | 21 C30 | 16.349 | 16.349 | 0.000 | 826774 | | (a) | | | | 1 C8 2 C10 4 C12 8 2-Fluorobiphenyl 9 C14 11 C16 12 C18 13 o-Terphenyl 16 C20 17 C22 18 C24 19 C26 20 C28 | 1 C8 2.472 2 C10 4.356 4 C12 6.108 8 2-Fluorobiphenyl 7.534 9 C14 7.633 11 C16 8.984 12 C18 10.198 13 o-Terphenyl 10.941 16 C20 11.296 17 C22 12.299 18 C24 13.219 19 C26 14.100 20 C28 15.097 | 1 C8 2.472 2.472 2 C10 4.356 4.356 4 C12 6.108 6.108 8 2-Fluorobiphenyl 7.534 7.534 9 C14 7.633 7.633 11 C16 8.984 8.984 12 C18 10.198 10.198 13 o-Terphenyl 10.941 10.941 16 C20 11.296 11.296 17 C22 12.299 12.299 18 C24 13.219 13.219 19 C26 14.100 14.100 20 C28 15.097 15.097 | 1 C8 2.472 2.472 0.000 2 C10 4.356 4.356 0.000 4 C12 6.108 6.108 0.000 8 2-Fluorobiphenyl 7.534 7.534 0.000 9 C14 7.633 7.633 0.000 11 C16 8.984 8.984 0.000 12 C18 10.198 10.198 0.000 13 o-Terphenyl 10.941 10.941 0.000 16 C20 11.296 11.296 0.000 17 C22 12.299 12.299 0.000 18 C24 13.219 13.219 0.000 19 C26 14.100 14.100 0.000 20 C28 15.097 15.097 0.000 | 1 C8 2.472 2.472 0.000 804949 2 C10 4.356 4.356 0.000 777961 4 C12 6.108 6.108 0.000 738673 8 2-Fluorobiphenyl 7.534 7.534 0.000 717677 9 C14 7.633 7.633 0.000 737521 11 C16 8.984 8.984 0.000 737282 12 C18 10.198 10.198 0.000 745026 13 o-Terphenyl 10.941 10.941 0.000 811514 16 C20 11.296 11.296 0.000 743776 17 C22 12.299 12.299 0.000 746038 18 C24 13.219 13.219 0.000 768770 19 C26 14.100 14.100 0.000 794181 20 C28 15.097 15.097 0.000 804777 | RT EXP RT DLT RT RESPONSE (ng/ul) | | Data File: 09110609 001.d Report Date: 20-Sep=2006 14:45 | | | | | | | CONCENTRA | ATIONS | | |-----------|------------|--------|--------|--------|----------|-----------|--------|-------------| | | | | | | | ON-COLUMN | FINAL | _ | | Compounds | | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/L | _) | | | A ANA CINA | | | ===== | | | | | | 23. C32 | | 18.050 | 18.050 | 0.000 | 807376 | | | (a) | | 24 C34 | | 20.459 | 20.459 | 0.000 | 645477 | | | (a) | | 25 C36 | | 23.965 | 23.965 | 0.000 | 503324 | | | (a) | ### QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ) R - Spike/Surrogate failed recovery limits. Data File: 09110609 002.d Report Date: 20-Sep=2006 14:45 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_002.d DIESEL1000 Client Smp ID: DIESEL1000 11-SEP-2006 15:04 werners Data file : Lab Smp Id: Inj Date : 💮 🤏 🐃 Inst ID: 🛉 inst09:i 😁 Operator Smp Info Misc Info werners 091106,dro09,DIESEL1000 dc= HP5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 20-Sep-2006 14:45 werners Quant Type: ESTD T1-SEP-2006 15:04 Calibration Sample, Level: 6 Comment Method Meth Date Yeth Date Date : botțle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | AMOUN | TS | |--|--------|--------|--------|----------|---|---------| | | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | ###################################### | | | ===== | | *************************************** | | | \$ 8 2-Fluorobiphenyl | 7.535 | 7,534 | 0.001 | 3569032 | 50.0000 | 42.644 | | \$ 13 o-Terphenyl | 10.944 | 10.941 | 0.003 | 4185225 | 50.0000 | 41.425 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 73876078 | 1000.00 | 904.58 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 73876078 | 1000.00 | 904.58 | Data File: 09110609 003.d Report Date: 20-Sep=2006 14:45 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_003.d DIESEL750 Client Smp ID: DIESEL750 11-SEP-2006 15:40 Data file : Lab Smp Id: Inj Date : Operator Smp Info Misc Info werners 091106,dro09,DIESEL750 Inst ID: inst09:i dc= HP5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 20-Sep-2006 14:45 werners Ouant Type: ESTD 11-SEP-2006 15:04 Calibration Sample, Level: 5 omment Method Meth Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | AMOUNTS | | | | |-----------|---------------------------|-------------|---|--|---|--|--| | | | | | CAL-AMT | ON-COL | | | | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | | EEC 11172 | | | | | | | | | 7.533 | 7.534 | -0.001 | 3027616 | 35.0000 | 36.175 | | | | 10.941 | 10.941 | 0.000 | 3572210 | 35.0000 | 35.357 | | | | 4.256- | 18.151 | | 59218038 | 750.000 | 725.10 | | | | 4.256- | -18.151 | | 59218038 | 750.000 | 725.10 | | | | | 7.533
10.941
4.256- | 7.533 7.534 | 7.533 7.534 -0.001
10.941 10.941 0.000
4.256-18.151 | 7.533 7.534 -0.001 3027616
10.941 10.941 0.000 3572210
4.256-18.151 59218038 | CAL-AMT RT EXP RT DLT RT RESPONSE (ng/ul) 7.533 7.534 -0.001 3027616 35.0000 10.941 10.941 0.000 3572210 35.0000 4.256-18.151 59218038 750.000 | | | Data File: 09110609 004.d Report Date: 20-Sep=2006 14:45 #### STL Chicago SW846 Method 8015 CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_004.d ESEL500 Client Smp ID: DIESEL500 -SEP-2006 16:16 Data file : Lab Smp Id: Inj Date : Inst ID: inst09:i Opërator Smp Info werners 091106,dro09,DIESEL500 Misc Info omment Method Meth Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |----------------------------|---|--| | DF
Uf
Vt
Vo
Vi | 1.000
2.000
5000.000
1000.000
2.000 | Dilution Factor ng coversion factor FinalVolume (ul) SampleVolume (ml) InjectionVol (ul) | | | | | | | AMOUNTS | | |----------------------------------|--------|--------|-----------------|----------|---------|---| | | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | == | | DE MENO MENO ME | | ###==== | ======================================= | | \$ 8 2-Fluorobiphenyl | 7.531 | 7.534 | -0.003 | 1994483 | 25.0000 | 23.830 | | \$ 13 o-Terphenyl | 10.939 | 10.941 | -0.002 | 2369751 | 25.0000 | 23.455 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 36602834 | 500.000 | 448.18 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 36602834 | 500.000 | 448.18 | Data File: 09110609 005.d Report Date: 20-Sep=2006 14:45 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_005.d DIESEL250 Client Smp ID: DIESEL250 11-SEP-2006_16:53 Data file : Lab Smp Id: Inj Date : Inst ID: inst09.i)përator Smp Info werners 091106,dro09,DIESEL250 (11'sc Info omment Method : Meth Date : Cal Date : Als bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | AMOUN | ITS | |----------------------------------|--------|--------|--------|----------|---------|---------| | • | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | | *** | ~=== | | **** | 122 | | \$ 8 2-Fluorobiphenyl | 7.530 | 7.534 | -0.004 | 908814 | 10.0000 | 10.859 | | \$ 13 o-Terphenyl | 10.935 | 10.941 | -0.006 | 1091694 | 10.0000 | 10.805 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 19906467 | 250.000 | 243.74 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 19906467 | 250.000 | 243.74 | Data File: 09110609 006.d Report Date: 20-Sep=2006 14:46 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609.006.d DIESEL100 Client Smp ID: DIESEL100 11-SEP-2006 17:29 Data file : Lab Smp Id: Inj Date : werners 091106,dro09,DIESEL100 Inst ID: inst09:i Opërator Smp Info lisc Info dc= HP5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 20-Sep-2006 14:46 werners Quant Type: ESTD 11-SEP-2006 15:04 Calibration Sample, Level: 2 Method Yeth Date Jal Date omment leth bate: lal Date: lal Date: lal Batton: lal Factor: lategrator: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | • | | | | | AMOUN | TS | |--|----------|---------------------|--------|----------|---------|---------| |
 | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | 11 m m m m m m m m m m m m m m m m m m | 1001/100 | 7.1. W. W. W. W. W. | | | | | | \$ 8 2-Fluorobiphenyl | 7.529 | 7.534 | -0.005 | 410882 | 5.00000 | 4.909 | | \$ 13 o-Terphenyl | 10.935 | 10.941 | -0.006 | 493404 | 5.00000 | 4.884 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 8876487 | 100.000 | 108.69 | | S 15 Diesel Range Organics (DRO) | 4,256- | 18.151 | | 8876487 | 100.000 | 108.69 | Data File: 09110609 007.d Report Date: 20-Sep=2006 14:46 ### STL Chicago SW846 Method 8015 CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_007.d ESEL25 Client Smp ID: DIESEL25 -SEP-2006 18:05 Data file : Lab Smp Id: Inj Date : ners 106,dro09,DIESEL25 Inst ID: inst09:i Opërator Smp Info Misc Info P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:46 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609 007.d Calibration Sample, Level: 1 omment Method :: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |----------------------------|---|--| | DF
Uf
Vt
Vo
Vi | 1.000
2.000
5000.000
1000.000
2.000 | Dilution Factor ng coversion factor FinalVolume (ul) SampleVolume (ml) InjectionVol (ul) | | | | | | | AMOUN | TS | |----------------------------------|--------|--------|--------|----------|-------------------------|---------| | | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DŁT RT | RESPONSE | (ng/ul) | (ng/ul) | | | ==== | ===== | | | *** *** *** *** *** *** | | | \$ 8 2-Fluorobiphenyl | 7.529 | 7.534 | -0.005 | 91445 | 1.00000 | 1.093 | | \$ 13 o-Terphenyl | 10.934 | 10.941 | -0.007 | 117783 | 1.00000 | 1.166 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 2389650 | 25.0000 | 29.260 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 2389650 | 25.0000 | 29.260 | Data File: 09110609 008.d Report Date: 20-Sep=2006 14:46 #### STL Chicago | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | AMOUNTS | | | | |----------------------------------|--------|---------|--------|-------------------------------|---------|---------|--|--| | | | | | | CAL-AMT | ON-COL | | | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | | | == | | | THE COURSE OF STREET, SAN SAN | | | | | | \$ 82-Fluorobiphenyl | 7.529 | 7.534 | -0.005 | 781285 | 10.0000 | 9.335 | | | | \$ 13 o-Terphenyl | 10.935 | 10.941 | -0.006 | 948068 | 10.0000 | 9.384 | | | | S 14 DRO (C10-C32) | 4.256- | -18.151 | | 18811774 | 250.000 | 230.34 | | | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 18811774 | 250.000 | 230.34 | | | Data File: 09110609 009.d Report Date: 20-Sep=2006 14:46 #### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_009.d DIESELSSV Client Smp ID: DIESELSSV 11-SEP-2006_19:18 werners Data file : Lab Smp Id: Inj Date : werners 091106.dro09.DIESELSSV Inst ID: inst09:i Opërator imp Into Misc Info 55890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m \J-Sep-2006 14:46 werners Quant Type: ESTD \Cal File: 09110609_007.d \QC Sample: LCS omment Date bottle Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi * 1000) | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | | CUNCENTRA | 4110N2 | |-------|---|--------|--------|--------|----------|-----------|------------| | | | | | | | ON-COLUMN | FINAL | | Comp | ounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/L) | | | لمن أثلث فلن فلن ألف ثلنا فلن ثلث شد شد شد شد شد المد المد المد المد المد المد المد الم | | | | | | | | \$ | 8 2-Fluorobiphenyl | 7.529 | 7.534 | -0.005 | 826138 | 9.87089 | 0.04935 | | \$ 13 | 3 o-Terphenyl | 10.935 | 10.941 | -0.006 | 960822 | 9.51009 | 0.04755(R) | | S 1 | 4 DRO (C10-C32) | 4.256- | 18.151 | | 19291548 | 236.215 | 1.181 | | S 1 | 5 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 19291548 | 236.215 | 1.181 | | | | | | | | | | #### QC Flag Legend R - Spike/Surrogate failed recovery limits. Data File: 09110609 066.d Report Date: 20-Sep=2006 15:00 ### STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 066.d RTSTDC8-C40 Client Smp ID: RTSTDC8-C40 14-SEP-2006 15:43 Data file : Lab Smp Id: Inj Date : Operator werners 091106.dro09.RTSTDC8-C40 Smp Info Misc Info omment lethod Meth Date : Cal Date : Als bottle: Quant Type: ESTD Cal File: 09110609_002.d Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: dsl.sub | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | CONCENTRA | ATIONS | |-----------------------|--------|--------|--------|----------|----------------------|------------------| | Compounds | RT | EXP RT | OLT RT | RESPONSE | ON-COLUMN
(ng/ul) | FINAL
(mg/L) | | 1 C8 | 2.471 | 2.472 | -0.001 | 747940 | | (a) | | 2 C10 | 4.354 | 4.356 | -0.002 | 718603 | | (a) | | 4 C12 | 6.101 | 6.108 | -0.007 | 708090 | | (a) | | \$ 8 2-Fluorobiphenyl | 7.526 | 7.534 | -0.008 | 687420 | 8.21346 | 0.04107 | | 9 C14 | 7.625 | 7.633 | -0.008 | 706620 | | (a) | | 11 C16 | 8.976 | 8.984 | -0.008 | 706500 | | (a) | | 12 C18 | 10.190 | 10.198 | -0.008 | 714085 | | (a) | | \$ 13 o-Terphenyl | 10.933 | 10.941 | -0.008 | 779714 | 7.71751 | 0.03859(R) | | 16 C20 | 11.288 | 11.296 | -0.008 | 713869 | | (a) | | 17 C22 | 12.290 | 12.299 | -0.009 | 718114 | | (a) | | 18 C24 | 13.211 | 13.219 | -0.008 | 716091 | | (a) | | 19 C26 | 14.092 | 14.100 | -0.008 | 715676 | | (a) | | 20 C28 | 15.086 | 15.097 | -0.011 | 708002 | | (a) | | 21 C30 | 16.336 | 16.349 | -0.013 | 680686 | | (a) | Data File: 09110609 066.d Report Date: 20-Sep=2006 15:00 | | | | | | | CONCENTRA | 4LTON2 | | |-----------|----|---------|--------|--------|----------|--------------------------------|---------|--| | | | | | | | ON-COLUMN | FINAL | | | Compounds | | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/L) | | | | | 90A BEE | - | | | 311.1111 1111 129 1111 511.512 | | | | 23 C32 | ٠. | 18.030 | 18.050 | -0.020 | 586142 | | (a) | | | 24 C34 | | 20.432 | 20.459 | -0.027 | 426039 | | (a) | | | 25 C36 | | 23.922 | 23.965 | -0.043 | 279098 | | (a) | | ### QC Flag Legend a - Target compound detected but quantitated amount Below Limit Of Quantitation(BLOQ) R - Spike/Surrogate failed recovery limits. Data File: 09110609 085.d Report Date: 20-Sep=2006 15:00 ### STL Chicago ``` SW846 Method 8015 Data file: \CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609.085.d Lab Smp Id: DIESELCCV3 Client Smp ID: DIESELCCV3 Inj Date: 15-SEP-2006 03:12 Operator: werners: Inst ID: inst09.i Smp Info: 091106,dro09,DIESELCCV3 Misc Info: dc= Comment: HP5890 FID XTi-5 Method: \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m Meth Date: 20-Sep-2006 15:00 werners Cal Date: 11-SEP-2006 15:04 Cal File: 09110609 002.d Als bottle: 85 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: icaldro.sub Target Version: 4.04 Processing Host: CHI-GROUPER ``` | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | AMOUN | 15 | |----------------------------------|-----------|--------|--------|----------|---------|---------| | | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | == | | | | | | | \$ 8 2-Fluorobiphenyl | 7.523 | 7.534 | -0.011 | 813573 | 10.0000 | 9.721 | | \$ 13 o-Terphenyl | 10.929 | 10.941 | -0.012 | 998565 | 10.0000 | 9.884 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 20017562 | 250.000 | 245.10 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 20017562 | 250.000 | 245.10 | | | | | | | | | Data File: 09110609 094.d Report Date: 20-Sep=2006 15:06 ## STL Chicago | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | AMOUN | TS | |----------------------------------|--------|--------|--------|----------|----------|---------| | | | | | | CAL-AMT | ON-COL. | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | | | | | <u> </u> | | | \$ 82-Fluorobiphenyl | 7.524 | 7.534 | -0.010 | 2147397 | 25.0000 | 25.658 | | \$ 13 o-Terphenyl | 10.932 | 10.941 | -0.009 | 2617710 | 25.0000 | 25.910 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 41373471 | 500.000 | 506.60 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 41373471 | 500.000 | 506.60 | Data File: 09110609 103.d Report Date: 20-Sep=2006 15:00 ## STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_103.d DIESELCCV3 Client Smp ID: DIESELCCV3 15-SEP-2006_14:07 werners Data file : Lab Smp Id: Inj Date : Operator Smp Info Inst ID: inst09.i werners 091106,dro09,DIESELCCV3 Misc Into
P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 15:00 werners Quant Type: ESTD 1-SEP-2006 15:04 Cal File: 09110609 002.d Continuing Calibration Sample omment Date botțle Cal Date : II-SEP-2006 15:04 Als bottle: 103 Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | | amoun | ITS | |-----|--------------------------------|-------------|--------|----------------------|----------|---------|---------| | | | | | | | CAL-AMT | ON-COL | | C | ompounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | === | | **** | | 107 De 100 DE 107 DE | | | **** | | \$ | 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 822195 | 10.0000 | 9.824 | | \$ | 13 o-Terphenyl | 10.927 | 10.941 | -0.014 | 992596 | 10.0000 | 9.824 | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 19868139 | 250.000 | 243.28 | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 19868139 | 250.000 | 243.28 | | | | | | | | | | Data File: 09110609 114.d Report Date: 20-Sep=2006 15:04 ## STL Chicago ``` SW846 Method 8015 Data file: \CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_114.d Lab Smp Id: DIESELCCV4 Client Smp ID: DIESELCCV4 Inj Date: 15-SEP-2006_20:46 Operator: werners Inst ID: inst09.i Smp Info: 091106,dro09,DIESELCCV4 Misc Info: dc= Comment: HP5890 FID XTi-5 Method: \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m Meth Date: 20-Sep-2006_15:04 werners Ouant Type: ESTD Cal Date: 11-SEP-2006_15:04 Cal File: 09110609_002.d Cal Date: 11-SEP-2006_15:04 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: icaldro.sub Target Version: 4.04 Processing Host: CHI-GROUPER ``` | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | AUOMA | ITS | |----------------------------------|--------|--------|--------|----------|--|---------| | | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | | | | | | == == == == == == == == == == == == == | | | \$ 8 2-Fluorobiphenyl | 7.522 | 7.534 | -0.012 | 2081474 | 25.0000 | 24.870 | | \$ 13 o-Terphenyl | 10.927 | 10.941 | -0.014 | 2519563 | 25.0000 | 24.938 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 39245093 | 500.000 | 480.54 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 39245093 | 500.000 | 480.54 | Data File: 09110609 120.d Report Date: 20-Sep=2006 15:00 ## STL Chicago ``` SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609_120.d DIESELCCV3 Client Smp ID: DIESELCCV3 16-SEP-2006_00:24 werners Data file : Lab Smp Id: Inj Date : werners 091106,dro09,DIESELCCV3 Qpĕrator - Smp Into P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m \O-Sep-2006 15:00 werners Ouant Type: ESTD Cal File: 09110609 002.d Continuing Calibration Sample Misc Info Comment Method Meth Date Cal Date Date : bottle: Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.04 Processing Host: CHI-GROUPER Compound Sublist: icaldro.sub ``` | Name | Value | Description | |------|----------|---------------------| | DF | 1.000 | Dilution Factor | | Uf | 2.000 | ng coversion factor | | Vt | 5000.000 | FinalVolume (ul) | | Vo | 1000.000 | SampleVolume (ml) | | Vi | 2.000 | InjectionVol (ul) | | | | | | | amoun | ITS . | |---|--------|--------|--------|----------|-----------------------------|---------| | | | | | | CAL-AMT | ON-COL | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (ng/ul) | | = w = w = m = m = m = m = m = = = = = = | | | | | 250 205 100 WW. HIS SEE 100 | ======= | | \$ 82-Fluorobiphenyl | 7.518 | 7.534 | -0.016 | 770073 | 10.0000 | 9.201 | | \$ 13 o-Terphenyl | 10.924 | 10.941 | -0.017 | 938739 | 10.0000 | 9.292 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 20721972 | 250.000 | 253.73 | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 20721972 | 250.000 | 253.73 | # QUALITY CONTROL DATA QUALITY CONTROL RESULTS Job Number.: 248531 Report Date.: 09/20/2006 EUSTOMER: SOS Engineers, Inc. + 1 200 PROJECT: GSA - SLOP ALENE SERVICE ALENE SER LA Reag. Code Lab ID Dilution Factor Date Time QC Type Description Test Method.....: 8015B MDRO Method Description.: TPH - Diesel Range Organics (DRO) Equipment Code....: INSTO9 Analyst...: san Batch..... 189555 189077-001 09/15/2006 0348 MB Method Blank Orig. Value QC Calc. Parameter/Test Description Units QC Result QC Result True Value * Limits Data File: 09110609 086.d Report Date: 20-Sep=2006 14:35 ## STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 086.d 189077-1MB Client Smp ID: 189077=MB 15-SEP-2006 03:48 Data file : Lab Smp Id: Inj Date : werners 091106,dro09,189077-1MB Inst ID: inst09:i Operator Smp Info Misc Info Comment Method Meth Date Cal Date Date : pottle: 86 T.Ouvou HP Genie 1.04 Factor: Integrator: HP [arget Version: Compound Sublist: 8015dro.sub Processing Host: CHI-GROUPER Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2.000
2500.000
2.000
15.000 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTRA | ATIONS | |----|--------------------------------|------------------------|------------------------|--------|----------|------------------------------------|---------| | | | | | | | ON-COLUMN | FINAL | | Co | ompounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | | | | | | 1000 1000 1000 1000 1000 1000 1000 | | | \$ | 8 2-Fluorobiphenyl | 7.523 | 7.534 | -0.011 | 1187906 | 14.1934 | 2.366 | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1557322 | 15.4142 | 2.569 | | S | 14 DRO (C10-C32) | Com | Compound Not Detected. | | | | | | S | 15 Diesel Range Organics (DRO) | Compound Not Detected. | | | | | | Data File: 09110609 117.d Report Date: 20-Sep=2006 14:42 ## STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 117.d 248531-17MS Client Smp ID: SB1185=2MS 15-SEP-2006 22:35 werners Data file Lab Smp Id Inj Date werners 091106,dro09,248531-17MS,10 Inst ID: inst09: Jpērator amp Info nisc Into P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:38 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d QC Sample: MS omment Date bottle 10'00000 HP Genie Ion: 4.04 Factor Compound Sublist: 8015dro.sub <u> Integrator:</u> Target Version: Targët Version: 4.04 Processing Host: CHI-GROUPER Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|--|---| | DF
Uf
Vt
Vi
Ws
M | 10.000
2.000
2500.000
2.000
15.378
14.200 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCENTRA | ATIONS | | |-----|--------------------------------|---------|--------|--------|----------|-----------|----------|---| | | | | | | | ON-COLUMN | FINAL | | | Co | ompounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | === | | 002 EEE | | | | | | - | | \$ | 8 2-Fluorobiphenyl | 7.518 | 7.534 | -0.016 | 129648 | 1.54907 | 2.935 | 1 | | \$ | 13 o-Terphenyl | 10.924 | 10.941 | -0.017 | 226478 | 2.24165 | 4.247 | | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 19613090 | 240.153 | 455.03 | | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 19613090 | 240.153 | 455.03(R |) | ## QC Flag Legend R - Spike/Surrogate failed recovery limits. Data File: 09110609 118.d Report Date: 20-Sep=2006 14:43 ## STL Chicago SW846 Method 8015 \\CHI-Chromis\E\chem\inst09.i\091106c32.b\09110609 118.0 248531-17MSD Client Smp ID: SB1185-2MSD 15-SEP-2006 23:11 Data file : Lab Smp Id: Inj Date : werners 091106,dro09,248531-17MSD,10 Inst ID: inst09:i Misc Info P5890 FID XTi-5 \CHI-Chromis\E\chem\inst09.i\091106c32.b\vap09.m 0-Sep-2006 14:38 werners Quant Type: ESTD 1-SEP-2006 18:05 Cal File: 09110609_007.d QC Sample: MSD omment Date bottle Dil Factor: 10.00000 Integrator: HP Genie Target Version: 4.04 Compound Sublist: 8015dro.sub Processing Host: CHI-GROUPER Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000)) * (100-M)/100)) | Name | Value | Description | |---------------------------------|---|---| | DF
Uf
Vt
Vi
Ws
M | 10.000
2.000
2500.000
15.400
14.200 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | CONCENTR | ATIONS | | |----------------------------------|---------|--------|--------|----------|-----------|-----------|---| | | | | | | ON-COLUMN | FINAL | | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | | 2014 - AAAA | | ===== | ===== | ======== | <u> </u> | | | | \$ 8
2-Fluorobiphenyl | 7.518 | 7.534 | -0.016 | 138140 | 1.65053 | 3.123 | 1 | | \$ 13 o-Terphenyl | 10.924 | 10.941 | -0.017 | 217191 | 2.14973 / | 4.067 | 1 | | S 14 DRO (C10-C32) | 4.256- | 18.151 | | 9527512 | 116.660 | 220.72 | | | S 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 9527512 | 116.660 | 220.72(R) | | QC Flag Legend R - Spike/Surrogate failed recovery limits. Data File: 09110609 087.d Report Date: 20-Sep=2006 14:35 ## STL Chicago Concentration Formula: Amt * DF * (Uf * Vt/((Vi * Ws * 1000) * (100-M)/100)) | Name | Value | Description | |---------------------------------|--|---| | DF
Uf
Vt
Vi
Ws
M | 1.000
2500.000
2500.000
15.000
0.000 | Dilution Factor ng unit correction factor Volume of final extract (ul) Volume injected (ul) Weight of sample extracted (g) % Moisture | | | | | | | | CONCEINING | WI TONZ | |--------|--------------------------------|--------|--------|--------|----------|------------|-------------------------| | | | | | | | ON-COLUMN | FINAL | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ng/ul) | (mg/Kg) | | 227.02 | | ==== | | | ======== | | | | \$ | 8 2-Fluorobiphenyl | 7.523 | 7.534 | -0.011 | 1419245 | 16.9575 | 2.826 | | \$ | 13 o-Terphenyl | 10.930 | 10.941 | -0.011 | 1847838 | 18.2897 | / 3.048 / | | S | 14 DRO (C10-C32) | 4.256- | 18.151 | | 28247507 | 345.877 | 57.646 | | S | 15 Diesel Range Organics (DRO) | 4.256- | 18.151 | | 28247507 | 345.877 | 57.646 | | | | | | | | | | CONCENTRATIONS | S | TL Ch | icago | | | |---|-------|-----------------|-----|--| | G | C/FID | Analysis | Log | | Page #: 148 | (b) (6) | | |-----------------------------|-----------------------------| | (C) [C] 9 3 4 | Methodd 1009 Column: X+1-5 | | Queue: OQQO Linj. Vol.:_ | 200° CDet. Temp: 300° C | | Temp. Program: 50°C > Imin, | 20°/min ->300°C, hold 15mir | | Rep. # | Sampl | e Description | Dil.
Factor | Inje | ction Date/Time | Comments | |--------|------------|---------------|----------------|------|-----------------|--------------| | | RIS | D(8-C40 | | 911 | 1061428 | ED6HWRD#11 | | j | Diese | 21/000 | | | 1504 | EOGGWIDFG1 | | 3 | Ĩ | 750 | | | 1540 | E066W10F52 | | 4 | | 500 | | | 166 | E066WIDF41 | | 5 | | 250 | | | 1653 | EDGGWIDF31 | | 6 | | 100 | | | 1729 | EDGGWDF21 | | 7 | | 25 | | | 1805 | EDGGWIDF11 | | 8 | $\forall $ | CCVS | | | 1842 | EDGIWCDF31 | | q | V | SSV | | | 1918 | EOW IWSDF31 | | 10 | MDto | or 2000 | | | 1954 | E06/W14061 | | 11 | | 1500 | | | 2031 | EDGIWIHOS) | | 12 | | 1000 | | | 2107 | E06 IW/4041 | | 13 | | 500 | | | 2144 | E06IW14031 | | 14 | | 200 | | | 2720 | E06/W14021 | | 15 | | 50 | | | 2756 | E06/10/4011 | | 16 | V | CCV | | | <u>V 2333</u> | E06 IWCH031 | | 17 | 101 | DRD 500 | | 9 | 12.00 | E06EWIW161 | | 18 | | 200 | | | 8045 | EOGEWIW152 | | 19 | | 100 | . , | | 0199 | E06EW1W141 | | 20 | | 80 | | | 0158 | | | 21 | | 40 | | | 0234 | E06 E W/W/21 | | 12 | | 20 | | | 0311 | EOGEWIWI11 | | 23 | . \ | V & V | | | V 0347 | E06EWCW141 | | | (b) (6) |
/ | 9 17001 | |------------|---------|-------|---------------------| | Reviewer: | |)ate: | 12000 | | (GAICAAGI. | | | CHI-22-17-018/C-3/9 | | STL Chicago | | |-------------------------|--------------| | GC/FID Analysis Log | | | Instrument 09 - Hewlett | Packard 5890 | Page #: 150 | Analyst (b) (6) | Method: dro 09 Column: X+1-5 | |--------------------------|--| | Queue: 091106 Inj. Vol.: | 2 ul Inj. Temp: 280 °C Det. Temp: 300 °C | | Temp. Program: Sanu ——— | | | | | | | | Dil. | Ì | - January 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 19 | 1 | |-------------|------------------------|--------|-------|--|------------------------| | Rep.# | Sample Description | Factor | Injec | tion Date/Time | Comments | | 47 | 248361-4 | 50 | 4.14 | 1819 | | | 48 | 348319 - 51 | | | <u> 1855 </u> | 188519-3LCD | | 49 | 248336-/ | 1 | | 1931 5 | 124831958 THE WIDEDERV | | 50 | 1 -/2 |) | | 3008 , | 2483312-3:4004814.41/h | | 51 | 1/23 | 50 | | 2044 | 248361-3 140 24836316 | | 52 | WIDRERVAIZU | | | 2120 | WIDROCC L24861-3'10 | | 53 | 248361-1 | | V | | WIDROCOU | | 54 | 1 - 2 | | 9-13 | 1307 | RTSTDC8-C40 | | 55 | 4-3 | 50 | | 1343 | DIESCICCU3 | | 56 | 189039-14B | | | 1507 | | | 57 | 1-2LCS | | | 1543 | | | 58 | V -3LCD | , | | 1619 | | | 59 | JY8553-1 | 1 | | 1656 | > | | 60 | 248554-15 | 1 | | 1732 | | | 61 | 248582-1 | 1 | | 1809 | | | 62 | 500 1149-1 | 1 | | 1845 | 5 | | 63 | 1 -2 | 1 | | 1921 | | | 64 | V -3 | 1 | | 1958 | | | 65 | Diese lav4 | . , | V | Ŭ (| | | 66 | In- TOM ALLA | | 9.14 | 1534 | | | 67 | WINRDCCV | | | 1619 | | | 68 | MB-500-504/ | J | | 1658 | 3 | | 69 | LC5 V | l | 1 | 1732 | | | | (b) (6) | | | | | | | (b) (6) | Data | 9-20-06 | |-----------|---------|-------|----------------------| | Reviewer: | | Date: | CHI-22-17-018/C-3/99 | | TL Chicago
C/FID Analysis Log | Page #: 151 | |---------------------------------------|--| | strument 09 - Hewlett Pack
(b) (6) | Method: $\frac{droo9}{droo9}$ Column: $\frac{\chi+i-5}{droo9}$ | | geue: <u>09/104</u> Inj. \ | II.: 240 Inj. Temp: <u>280 C</u> Det. Temp: <u>300</u> C | | emp. Program: <u>SOMY —</u> | And the second of the second s | | lelilp. 1 (-9 | The state of s | | an an annual formation, " of a succession was a second | and the second s | |------------------|--|----------------|--
--| | Rep. # | Sample Description | Dil.
Factor | Injection Date/Time | Comments | | | 400-1493S-2 | į | 9.14.061808 | | | 71 | 1 - 3 | 1 | 1844 | | | 77 | 1 - 4 | , | 1921 | | | 73 | 5 | ì | 1957 | A de acrossmithelique y type effections porte selver | | 7 <u>)</u>
74 | -6 | ì | 2033 | | | 75 | \ \ 7 | 1 | 2109 | | | 76 | - 8 | ĵ | 2146 | | | 77 | V - 9 | 1 | 9999 | | | 78 | WIPROCCV | | 2588 | | | 79 | 400-14935-10 | 1 | V 2334 | | | 80 | | J | 6-12-07
0010 | | | 81 | -12 | İ | 0047 | | | 82 | V - 13 | | 0123 | | | 83 | USD-500-5241 | 1 | 10159 | | | 84 | WIDEDCCV | | 0235 | | | 85 | PHSE 1003 | | 1)3/a | | | 86 | 189077-14B |) . | 0348 | | | 87 | V-2108 | / | 0424 | | | 88 | 24853.)-13 | 1 | 0501 | | | 200 S. | 1 -14 | / | 0537 | | | 89 | -15 | 1 | 06/3 | | | 91 | -16 | 1 | 0613 |) | | 192 | 1-17 | / | 0726 | | | | (b) (6) | | | 9000 | | | | (b) (6) | Date: | 9-20-06 | |----|---------|---------|-------|----------------------| | Rε | viewer: | | Date | CHI-22-17-018/C-3/99 | | | | | | | | STL Chicago | 152 | |--------------------------------------|-------------------------| | GC/FID Analysis Log | Page #: | | Instrument 09 - Hewlett Packard 5890 | | | Analyst: Method: Method: X+ | 1-5 | | Queue: 09106 Inj. Vol.: 280°C De | t. Temp: <u>30</u> 0 °C | | Temp. Program: Sand — | . : | | | | <u> </u> | Dil. | | | | |--------|-------|-------------|----------|------|------------------|----------| | Rep. # | 4 | Description | Factor | Inje | ection Date/Time | Comments | | 93 | 3485 | 3)-17MS | <u> </u> | | 5.0602 | | | 94 | DIESE | 1004 | | | 0841 | | | 95 | WIDE | ROCCV | | | 0917 | | | 96 | 400-1 | 4935-2 | 10 | | 0953 | | | 97 | | - 3 | 10 | | 1030 | | | 98 | | -5 | 10 | | 1106 | | | 99 | | -5 | 100 | | 1142 | | | 100 | | -6 | 10 | | 1218 | | | 101 | | 1 - 6 | 100 | | 1255 | | | 102 | WID | ROCCV | | | 1331 | | | 103 | Diese | ICCV3 | | | 1407 | | | 104 | 2485 | 31-174512 | j | | 1443 | | | 105 | | 1 -18 | 1 | | 1520 | | | 106 | | -19 | <u> </u> | | 1556 | | | 107 | | -3D | , | | 1632 | | | 108 | | -21 | l | | 1708 | | | 109 | | - 22 | ر | | 1745 | | | 110 | | -23 | 1 | | 1821 | | | 111 | | - 26 | , 1 | | 1857 | | | 112 | V | -27 | 1 | | 1933 | | | 113 | 1248 | 554-2 | 1 | | 2010 | | | 114 | DIES | elcavy | | | 2041 | p | | 115 | 2489 | | j | V | / 2123 | 2 | | | (b) (6) | 5.4 | 9-20-04 | |-----------|---------|-------|---------------------| | Reviewer: | PANIN. | Date: | CHI-22-17-018/C-3/9 | | STL Chica
GC/FID AI | nalveie i oo | 2 100 100 100 100 | | Page #: | 153 | |------------------------|---|--------------------------|---------------------|-------------------------------|---------| | 4-r-mat | nt 09 - Hewlett Packa | 1 rd 5890
Meti | noddro 09 Colum | in: <u>X+i-5</u> | | | nijeue: | <u>91106 </u> | ol.: 2 | 10 Inj. Temp: 28 | <u>℃</u> Det. Temp: <u>30</u> | -
QC | | Temp. Progr | ram: <u>50,00 —</u> | -> | | 1 | | | Rep.# | Sample Description | Dil.
Factor | Injection Date/Time | Comme | | | 8 | 248554-13 | 1 | 9.15.04 | | | | 111 | 248531-17HS | ID | 2235 | | | | 118 | V-1745D | /D | 2311 | | | | 119 | 248554-15 |) | 4.16.06,000 | | | | 120 | DIESEICCU3 | | 1.70004 | - | | | | | | | | | Section 1 | | | | | | | | | | | 5AW 9/20/0 | 6 | | | *************************************** | <u> </u> | | | | | | | / | | | · | | | | | | | | | | | _/ | | | | | | | (1) (0) | | | | | CHI-22-17-018/C-3/99 i da da ka ing kanalangan da Reviewer | | on Date: 09 2 0
Code: 354 D
DCM: 45eto
Lot No.: C25E2 | MA(III) | G | STL Chicag
anic Extraction
SC/MS Semi-V | Record
olatiles | | Analy
Balar | No.: 18 16 No.: 18 16 est Initials: 1 nce ID No.: 2 | 学2 | | | |--------------------------------------|--|--|--------------------------------------|--|---|---|------------------------|---|--
--|-------------| | olvent | Lot No.: (2562)
Dispenser Volume (
ase (circle & define) | Checked: | _Lot No.: | | | Sodium 9 | Sulfate Lo | ot No.: 132 | 16314 | and the state of t | | | <u>∕/atrix:</u>
a. Wate
o∑Soil | er ã | Extraction Methods
a. SW-846 3510
b. SW-846 3550
c. SW-846 3580 | <u>d:</u>
(Sep Funr
(Sonicatio | nel) d. SW
n) (e)SW | /-846 3520
/-846 3541
ner: | (Soxhlet) | Star | hod Extraction
Time: 163
Time: | <u>50</u> | | | |). Othe | | | | | | | | | ٨ | /iultipliers | } | | - | Sample# | Sample ID | COC | ьН¹ (г | al Vol/Wt.
mLs(/g)) | Final
Vol. ²
(mLs) | (√)
K-D,q | Clean-Up
Absorbent | Surr. | Spike | Spl | | 1 i | 89077-MB | O GITTE | | 1 15.0 | 000 | 2.5 | | · | 1 | | | | 2 | J L(S_ | | ++++ | | <u>000 </u> | | | | 1 | 1 | | | 3 / | 248531-13 | SCS | 14. | 15. | 339 | | | | | <u> </u> | - | | 5 | -15 | | V, | 15 | 228 | - | | | 1 1 | | +- | | 6 | -16 | | 1) | | .203 | | | | \ \ | | | | 7 | -17
-17 MS | | | 15 | . <u>378</u> | | | | 1 | 1 1 | - | | 8 | 02ME) - | | | | <u> 400 </u> | | <u> </u> | | + | + 3 | +- | | 10 | -18 | | | | , <u>310 </u> | + | | | | | | | 11 | - 19 | | + | | , 5.79 | | | | 1 | | ļ | | 12 | -20 | | 1/ | 1 1 | 121 | | | | 1 | | - | | 14 | - 2a | | | | 5-283
5-359 | | | | + | <u> </u> | | | 15 | -23 | | | <u> </u> | 5.331
15.903 | 4 L L | | | l l | | | | 16 | -26 | | | | 5.98 | | | | 1 | | - - | | 17 | 248SS4-2 | | 1/ | | 5.536 | | | | | + | + | | 19 | \ -\\ | | | i | 5,877 | +1 | | | | | - - | | 20 | V -13 | | | <u> </u> | 15.715 | | | | | | \prod | | 21 | | | 3 | | | | | | | | - | | 22 | The second secon | | | | | | | | | | | | 24 | | | | | | | | | | - | \top | | 25 | ple pH / Acid Adjusted | | | <u> </u> | | <u> </u> | i nedgani | | | | rinner
• | | Sam | ple pH / Acid Adjusted
extract volume for BNA | MS/MSDN | is/MSD Not
Container S | Requested (Lin | nited Vol.)
with Solvent | MS/M
S | SD Design
ample Col | nated <u>*</u>
ntainer Not Sha | MS/MSD
ken Due | Chosen
To: | : | | ² The e | nsufficient Sample for his
Sample Container Shall
nments/Variance:_ | | | | | | | | | | | | 2The 6 | nsufficient Sample for in Sample Container Shahaments/Variance: | DRO SULV. | Work | | Volume: | 2504
: 2500 | d. | Std. ID#: <u>0</u>
Std. ID#: <u>(</u>
Std. ID#:_ | 6HWS | | | | 2The 6 | nsufficient Sample for is Sample Container Shah naments/Variance: | DRO SULV. | Work | weg working | Volume: | 2504
: 2500
: Date
Date | 9-1 | Std. ID#: <u>0</u> | 6HWS
VIDOC | id ea | <u> </u> | | 2The 6 | rogate: DUSCIII S/MS Solution: V Alyst Signature: Extracts | DRO SULV. | Work
MS 7 | Extraction e, Time | Volume:
Volume
Volume
Custody Re
A. Recei | 250 c
: 250 c
: Date
Date
ecord | 9-1 | Std. ID#; 0 (
Std. ID#; (
Std. ID#; (
2 -010
15/06 | 6HWS
VIDOC | | <u> </u> | | 2The 6 | rogate: Differ Somple for the Sample Container Share conta | DRO SMY
A PSCI DRO
A D) (6) Delinquished by (6) | Wark
MS 1 | Extraction e Time //OE / 53 0 | Volume: Volume Volume Custody Re (b) (6) Custody Re | 250 c
: 250 c
: Date
Date
ecord | e: 9-11
e: oql | Std. ID#: <u>0</u>
Std. ID#: <u>(</u>
Std. ID#: <u>(</u>
2 -00
1906
Time | 6HWS
VIDOC | ason for | <u>A</u> | *** Extraction Soxhlet (DRO) Report Date: 9/21/06 10:16 | Method C
Batch Co
Status | de: | 1890 | 77 Batch Time: 1607 | QC Code
Calc Code
Location (| | : PREP | | Equipmen
Import C | | | |---|------|------|------------------------------|------------------------------------|-------------|--------|------------|----------------------|--------------|--------------| | BATCH: | Item | | Description | | | De | escription | Informati | on | | | | 1 | | Comments | | | , sr | rrogate of | óhwsidea ^ | Ng | | | | 2 | | Comments | | | bo | ok 4078 pa | age 192 | | | | | 3 | | Comments | | | | | | | | | | 4 | | Comments | | | | | | | | | SAMPLE: | Grp | Pos | Sample ID | Dilution | SOXH
N/A | ILT | IWGT
9 | MLF
mL | PREPF
N/A | DLFAC
N/A | | | 1 | 1 | X_MB | | Comp | lete | 15.000 | 2.5 | 0.16667 | 0,99982 | | | 1 | 2 | X_LCS_OO6IWLDIEA_ | | Comp | lete | 15.000 | 2.5 | 0.16667 | 0.99982 | | | 1 | 3 | 248531_13_X | | Сопр | lete | 15.411 | 2.5 | 0.16222 | 0.97313 | | | 1 | 4 | 248531_14_X | | Сотр | lete | 15.339 | 2.5 | 0.16298 | 0.97768 | | · · · · · · · · · · · · · · · · · · · | 1 | 5 | 248531_15_X | | Comp | lete | 15.472 | 2.5 | 0.16158 | 0.96929 | | | 1 | 6 | 248531_16_X | | Comp | lete | 15.228 | 2.5 | 0.16417 | 0.98482 | | | 1 | 7 | 248531_17_X | | Сотр | lete | 15.203 | 2.5 | 0.16444 | 0.98644 | | | 1 | 8 | 248531_17_X_MS_006IWLDIEA_7 | | Comp | lete | 15.378 | 2.5 | 0.16257 | 0.97522 | | | 1 | 9 | 248531_17_X_MSD_006IWLDIEA_7 | | Comp | lete | 15.400 | 2.5 | 0.16234 | 0.97385 | | | 1 | 10 | 248531_18_X | | Comp | lete | 15.310 | 2.5 | 0.16329 | 0.97954 | | | 1 | 11 | 248531_19_X | | Comp | lete | 15.374 | 2.5 | 0.16261 | 0.97546 | | | 1 | 12 | 248531_20_X | | Comp | lete | 15.579 | 2.5 | 0.16047 | 0.96263 | | | 1 | 13 | 248531_21_X | | Comp | lete | 15.121 | 2.5 | 0.16533 | 0.99178 | | **** | 1 | 14 | 248531_22_X | | Comp | lete | 15.283 | 2.5 | 0.16358 | 0.98128 | | | 1 | 15 | 248531_23_X | | Сопр | lete | 15.359 | 2.5 | 0.16277 | 0.97642 | | | 1 | 16 | 248531_26_X | | Comp | lete | 15.903 | 2.5 | 0.15720 | 0.94301 | | | 1 | 17 | 248531_27_X | | Comp | lete | 15.908 | 2.5 | 0.15715 | 0.94271 | | *************************************** | 1 | 18 | 248554_2_X | | Comp | lete | 15.536 | 2.5 | 0.16092 | 0.96533 | | · | 1 | 19 | 248554_11_X | · | Comp | lete | 15.877 | 2.5 | 0.15746 | 0.94457 | | | 1 | 20 | 248554_13_X | | Comp | lete | 15.715 | 2.5 | 0.15908 | 0.95429 | ## GASOLINE RANGE ORGANICS GSA - SLOP JOB# 248531 | Laboratory Chronicle | 1 | |------------------------------|-----| | Chain of Custody | 9 | | Case Narrative | 16 | | Quality Control Summary | 18 | | Sample Data Package | 26 | | Standards Data Package | 67 | | Quality Control Data Package | 109 | ### STL Chicago is part of Severn Trent Laboratories, Inc. ## SAMPLE INFORMATION Date: 09/20/2006 Job Number .: 248531 Customer...: SCS Engineers, Inc. Attn....: David Brewer Project Number.....: 20006654 Customer Project ID...: GSA - SLOP Project Description...: GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 248531-1 | SB1015-3 | Soil | 09/05/2006 | 07:30 | 09/07/2006 | 10:00 | | 248531-2 | SB1025-5 | Soil | 09/05/2006 | 07:55 | 09/07/2006 | 10:00 | | 248531~3 | SB1035-4 | Soil | 09/05/2006 | 08:15 | 09/07/2006 | 10:00 | | 2485314 | sB1045-2 | Soil | 09/05/2006 | 08:30 | 09/07/2006 | 10:00 | | 248531-5 | sB1055-3 | Soil | 09/05/2006 | 09:15 | 09/07/2006 | 10:00 | | 248531-6 | sB1095-5 | Soil | 09/05/2006 | 12:00 | 09/07/2006 | 10:00 | | 2485317 | SB1095-10 | Soil | 09/05/2006 | 12:30 | 09/07/2006 | 10:00 | | 248531-8 | SB1105-1 | Soil | 09/05/2006 | 14:15 | 09/07/2006 | 10:00 | | 248531-9 | SB1105-4 | Soil | 09/05/2006 | 14:40 | 09/07/2006 | 10:00 | | 24853110 | SB1115-1 | Soil | 09/05/2006 | 14:55 | 09/07/2006 | 10:00 | | 248531-11 | SB1115-5 | Soil | 09/05/2006 | 15:20 | 09/07/2006 | 10:00 | | 248531-12 | SB1125-1 | Soil | 09/05/2006 | 15:40 | 09/07/2006 | 10:00 | | 248531-13 | SB1155-2 | Soil | 09/06/2006 | 08:00 | 09/07/2006 | 10:00 | | 248531-14 | SB1155-3 | Soil | 09/06/2006 | 08:10 | 09/07/2006 | 10:00 | | 248531-15. | SB1165-4 | Soil | 09/06/2006 | 11:00 | 09/07/2006 | 10:00 | | 248531-16 | SB1175-4 | Soil | 09/06/2006 | 11:45 | 09/07/2006 | 10:00 | | 248531-17 |
SB1185-2 | Soil | 09/06/2006 | 13:10 | 09/07/2006 | 10:00 | | 248531-18 | SB1185-5 | Soil | 09/06/2006 | 13:25 | 09/07/2006 | 10:00 | | 248531-19 | SB1195-3 | Soil | 09/06/2006 | 14:05 | 09/07/2006 | 10:00 | | 248531~20 | SB1195-4 | Soil | 09/06/2006 | 14:25 | 09/07/2006 | 10:00 | | 248531-21 | SB1215-3 | Soil | 09/06/2006 | 15:10 | 09/07/2006 | 10:00 | | 248531-22 | SB1225-2 | Soil | 09/06/2006 | 16:20 | 09/07/2006 | 10:00 | | 248531-23 | SB1225-4 | Soil | 09/06/2006 | 16:40 | 09/07/2006 | 10:00 | | 248531-24 | SB1255-3 | Soil | 09/06/2006 | 18:00 | 09/07/2006 | 10:00 | | 248531-25 | SB1125-5 | Soil | 09/05/2006 | 16:05 | 09/07/2006 | 10:00 | | 248531-26 | SB1135-5 | Soil | 09/05/2006 | 17:30 | 09/07/2006 | 10:00 | | | | | | | | | | | | | | | | | ### STL Chicago is part of Severn Trent Laboratories, Inc. SAMPLE INFORMATION Date: Job Number.: 248531 Project Number..... 20006654 Customer Project ID....: GSA - SLOP Customer...: SCS Engineers, Inc. Project Description...: GSA - SLOP Attn.....: David Brewer Sample Time Date Date Time Laboratory Customer Sample ID Sample ID Matrix Sampled Sampled Received Received 09/05/2006 09/07/2006 Soil 18:00 10:00 248531-27 SB1145-3 | Job | Number: 248531 | LABORATORY CHRONICLE Date: 09/20/2006 | | |---------------------|---|--|----------| | CUSTOMER: SCS Eng | ineers, Inc. | PROJECT: GSA – SLOP ATTN: David Brewer | | | | Client ID: SB1015-3 DESCRIPTION % Solids Determination | Date Recvd: 09/07/2006 Sample Date: 09/05/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED
1 188899 188899 09/09/2006 1903 | DILUTION | | Lab ID: 248531-2 | Client ID: SB1025-5 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1908 | | | _ab ID: 248531-3 | Client ID: SB1035-4 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1911 | | | Lab ID: 248531-4 | Client ID: SB1045-2 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1914 | | | _ab ID: 248531-5 | Client ID: SB1055-3 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1917 | | | Lab ID: 248531-6 | Client ID: SB1095-5 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1920 | | | Lab ID: 248531-7 | Client ID: SB1095-10 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTIO | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1922 | | | _ab ID: 248531-8 | Client ID: SB1105-1 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTIO | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1925 | | | _ab ID: 248531-9 | Client ID: SB1105-4 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1928 | | | _ab ID: 248531-10 | Client ID: SB1115-1 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTION | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1931 | | | _ab ID: 248531-11 | Client ID: SB1115-5 | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 | DILUTIO | | METHOD | DESCRIPTION | RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED | | | Method | % Solids Determination | 1 188899 188899 09/09/2006 1934 | | | | Client ID: SB1125-1
DESCRIPTION
% Solids Determination | Date Recvd: 09/07/2006 Sample Date: 09/05/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED
1 188899 188899 09/09/2006 1937 | DILUTIO | | METHOD | Client ID: SB1155-2
DESCRIPTION
% Solids Determination | Date Recvd: 09/07/2006 Sample Date: 09/06/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED
1 188899 188899 09/09/2006 1939 | DILUTIO | | 5030B
8015B MGRO | % Solids Determination
5030 Purge & Trap
TPH - Gasoline Range Org | 1 188923 09/11/2006 0009
anics (GRO) 1 188924 188923 09/11/2006 0009 | 1.00000 | | METHOD | Client ID: SB1155-3 DESCRIPTION % Solids Determination | Date Recvd: 09/07/2006 Sample Date: 09/06/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED
1 188899 188899 09/09/2006 1942 | DILUTIO | | Job | LABORATOR
Number: 248531 | ; in | a U N i | V I. E | Date: (| 09/20/2006 | | | |---------------------|--|-----------|---|-----------|---------|-----------------------------|---------|---| | USTOMER: SCS Eng | ineers, Inc. PROJE | CT: GSA - | SLOP | | | ATTN: David Bre | wer | | | ab ID: 248531-14 | Client ID: SB1155-3 | | | | | Date: 09/06/20 | | | | METHOD | DESCRIPTION | | | PREP BT | #(S) | DATE/TIME AN | | DILUTIO | | 5030B | 5030 Purge & Trap
TPH - Gasoline Range Organics (GRO) | 1 | 188923 | 400007 | | 09/11/2006 | 0044 | 4 0000 | | 8015B MGRO | TPH - Gasoline Range Organics (GRO) | 1 | 188924 | 188923 | | 09/11/2006 | 0044 | 1.00000 | | ab ID: 248531-15 | Client ID: SB1165-4 | Date Re | cvd: 09/ | /07/2006 | Sample | Date: 09/06/20 | 006 | | | METHOD | DESCRIPTION | | | | #(S) | DATE/TIME AN | | DILUTI | | | | 1 | | 188899 | | 09/09/2006 | 1945 | | | 5030B | % Solids Determination
5030 Purge & Trap | 1 | 188923 | | | 09/11/2006 | 0119 | | | 8015B MGRO | TPH - Gasoline Range Organics (GRO) | 1 | | 188923 | | 09/11/2006 | 0119 | 1.0000 | | 0013B ::010 | Title data title hange anguitte tanay | · | ,00,2 | .00720 | | 4.77 4 | | | | ab ID: 248531-16 | Client ID: SB1175-4 | | | | | Date: 09/06/20 | | | | METHOD | DESCRIPTION | | | | #(S) | DATE/TIME AN | | DILUTI | | Method | % Solids Determination | 1 | | 188899 | | 09/09/2006 | 1948 | | | 5030B | 5030 Purge & Trap | 1 | 188923 | | | 09/11/2006 | 0154 | | | 8015B MGRO | % Solids Determination
5030 Purge & Trap
TPH - Gasoline Range Organics (GRO) | 1 | 188924 | 188923 | | 09/11/2006 | 0154 | 1.0000 | | ah In• 2/8531-17 | Client ID: SB1185-2 | Date De | പൂർ വ | /07/2006 | Samnie | Date: 09/06/20 | 006 | | | MERCHAR | 5 F 5 5 5 T 7 5 11 | DUNE. | | | | DATE/TIME AN | | DILUTI | | Markad | DESCRIPTION V Calida Datarmination | 1 | 100000 | 188899 | #(3) | 09/09/2006 | 1951 | DILOII | | Method | % Solids Determination 5030 GC VOA (High Level Methanol) | 1 | 189015 | 100077 | | 09/09/2006 | 1559 | | | 5030B
8015B MGRO | 7030 GC VOA (High Levet Methanot) | 1 | | 189015 | | | 1559 | 2.000 | | SO ISB MGKO | TPH - Gasoline Range Organics (GRO) | ŧ | 107010 | 10701 | | 09/11/2006 | 1227 | 2.000 | | b ID: 248531-18 | Client ID: SB1185-5 | Date Re | cvd: 09/ | /07/2006 | Sample | Date: 09/06/20 | 006 | | | METHOD | DESCRIPTION | RUN# | BATCH# | PREP BT | #(S) | DATE/TIME AN | NALYZED | DILUTI | | Method | % Solids Determination | 1 | | 188899 | | 09/09/2006 | 1953 | | | 5030B | 5030 GC VOA (High Level Methanol) | 1 | 189015 | | | 09/11/2006 | 1634 | | | 8015B MGRO | % Solids Determination
5030 GC VOA (High Level Methanol)
TPH - Gasoline Range Organics (GRO) | 1 | 189016 | 189015 | | 09/11/2006 | 1634 | 2.000 | | ah ine 2/957110 | Client ID: SB1195-3 | Date De | oud: 00. | /07 /2004 | Sample | Date: 09/06/20 | 206 | | | | | DUNH | ONTOUR | PREP BT | #(e) | DATE/TIME AN | | DILUTI | | METHOD | DESCRIPTION % Solids Determination | 1 | 199900 | 188899 | #(3) | 00/00/2006 | 1956 | DILOII | | Method | % Solids Determination | 1 | 188923 | 100077 | | 09/09/2006
09/11/2006 | 0228 | | | 5030B | % Solids Determination
5030 Purge & Trap
TPH - Gasoline Range Organics (GRO) | 1 | | 188923 | | 09/11/2006 | 0228 | 1.0000 | | SO 136 PIGRO | THE Gasotille Range Organics (GRO) | ı | 100724 | 100723 | | 09/11/2000 | OZZO | 1.0000 | | ab ID: 248531-20 | Client ID: SB1195-4 | Date Re | cvd: 09, | /07/2006 | Sample | Date: 09/06/20 | 006 | | | METHOD | DESCRIPTION | | | PREP BT | | | | DILUTI | | | % Solids Determination | 1 | | 188899 | | 09/09/2006 | 1959 | | | 5030B | % Solids Determination
5030 GC VOA (High Level Methanol) | 1 | 189015 | | | 09/11/2006 | 1709 | | | 8015B MGRO | TPH - Gasoline Range Organics (GRO) | 1 | 189016 | 189015 | | 09/11/2006 | 1709 | 4.000 | | -L th- 3/8674 34 | Client ID. 0047457 | Doto Do | avai no | /n7/2004 | Cample | Nata: 00/04/20 | 204 | | | | Client ID: SB1215-3 | | | /07/2006 | | Date: 09/06/20 DATE/TIME AN | | DILUTI | | METHOD | DESCRIPTION | 1 | | PREP BT | #(3) | | 1259 | DILUI. | | Method | % Solids Determination | | 188923 | 188859 | | 09/08/2006 | 0303 | | | 5030B
8015B MGRO | 5030 Purge & Trap TPH - Gasoline Range Organics (GRO) | 1
1 | | 188923 | | 09/11/2006
09/11/2006 | 0303 | 1.0000 | | SO ISB HORO | The same the hange of gain to total | • | 1 W W C C C C C C C C C C C C C C C C C | | | 27, 172000 | | | | ab ID: 248531-22 | Client ID: SB1225-2 | | | /07/2006 | | Date: 09/06/20 | | | | METHOD | DESCRIPTION | RUN# | BATCH# | PREP BT | #(S) | DATE/TIME AN | VALYZED | DILUTI | | Method | % Solids Determination | 1 | 188859 | 188859 | | 09/08/2006 | 1301 | | | 5030B | 5030 GC VOA (High Level Methanol) | 1 | 189015 | | | 09/11/2006 | 1744 | | | 8015B MGRO
| TPH - Gasoline Range Organics (GRO) | 1 | 189016 | 189015 | | 09/11/2006 | 1744 | 1.0000 | | _L ID. 0/0574 07 | Client In. CD1775_/ | Nama na | പക്ക | /n7/2004 | Compl- | hate: 00/04/20 | 206 | | | ab ID: 248531-23 | | | | /07/2006 | | Date: 09/06/20 | | n i i i i i i i i i i i i i i i i i i i | | METHOD | DESCRIPTION % Solids Determination | | | PREP BT | #(3) | 09/08/2006 | 1303 | DILUTI | | Method
5030B | % Solids Determination
5030 Purge & Trap | 1
1 | 188923 | 188859 | | 09/08/2006 | 0338 | | | | | | | | | 1077 1 1 7 6 8 165 | | | | A TORY CHRONICLE Date: 09/20/2006 | |---| | PROJECT: GSA — SLOP ATTN: David Brewer | | Date Recvd: 09/07/2006 Sample Date: 09/06/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 188924 188923 09/11/2006 0338 1.00000 | | Date Recvd: 09/07/2006 Sample Date: 09/06/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 188859 188859 09/08/2006 1304 | | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 188859 188859 09/08/2006 1306 | | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 188859 09/08/2006 1308 | | 1 188923 09/11/2006 0413
1 188924 188923 09/11/2006 0413 1.00000 | | Date Recvd: 09/07/2006 Sample Date: 09/05/2006 RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 188859 188859 09/08/2006 1310 1 188923 09/11/2006 0448 1 188924 188923 09/11/2006 0448 | | | ### QUALITY ASSURANCE METHODS ### REFERENCES AND NOTES Report Date: 09/20/2006 ### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - U Analyte was not detected at or above the stated limit. - Not detected at or above the reporting limit. - J Result is less than the RL, but greater than or equal to the method detection limit. - B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - S Result was determined by the Method of Standard Additions. - F AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) inorganic reags (reag cocumin) 1. ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower - control limits. LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - + MSA correlation coefficient is less than 0.995. - 4 MS, MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - H MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - MS, MSD: Spike recovery exceeds the upper or lower control limits. - W AS(GFAA) Post-digestion spike was outside 85-115% control limits. Organic Qualifiers (Q - Column) - U Analyte was not detected at or above the stated limit. - ND Compound not detected. N O - J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - The chromatographic response resembles a typical fuel pattern. - Z The chromatographic response does not resemble a typical fuel pattern. - E Result exceeded calibration range, secondary dilution required. - F AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (flags Column) - B MB: Batch QC is greater than reporting limit. - * LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - a Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - H Alternate peak selection upon analytical review - I Indicates the presence of an interfence, recovery is not calculated. - M Manually integrated compound. - P The lower of the two values is reported when the % difference between the results of two GC columns is ### QUALITY ASSURANCE METHODS ### REFERENCES AND NOTES Report Date: 09/20/2006 ``` greater than 25%. Abbreviations Post Digestion Spike (GFAA Samples - See Note 1 below) AS Batch Designation given to identify a specific extraction, digestion, preparation set, or analysis set CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification €F Confirmation analysis of original C1 Confirmation analysis of A1 or D1 С2 Confirmation analysis of A2 or D2 С3 Confirmation analysis of A3 or D3 CRA Low Level Standard Check - GFAA; Mercury CRI Low Level Standard Check - ICP Calilbration Verification Standard CV Dil Fac Dilution Factor - Secondary dilution analysis D1 Dilution 1 D2 Dilution 2 D3 Dilution 3 DLFac Detection Limit Factor DSH Distilled Standard - High Level Distilled Standard - Low Level DSL. Distilled Standard - Medium Level DSM EB1 Extraction Blank 1 EB2 Extraction Blank 2 EB3 DI Blank ELC Method Extracted LCS Method Extracted LCD ELD ICAL Initial calibration ICB Initial Calibration Blank ICV Initial Calibration Verification IDL Instrument Detection Limit ISA Interference Check Sample A - ICAP Interference Check Sample B - ICAP ISB The first six digits of the sample ID which refers to a specific client, project and sample group Job No. Lab ID An 8 number unique laboratory identification LCD Laboratory Control Standard Duplicate Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest LCS MB Method Blank or (PB) Preparation Blank MD Method Duplicate MDI Method Detection Limit MLE Medium Level Extraction Blank MRL Method Reporting Limit Standard MSA Method of Standard Additions MS Matrix Spike MSD Matrix Spike Duplicate ND Not Detected PREPE Preparation factor used by the Laboratory's Information Management System (LIMS) PDS Post Digestion Spike (ICAP) RA Re-analysis of original Α1 Re-analysis of D1 Re-analysis of D2 Α2 А3 Re-analysis of D3 RD Re-extraction of dilution RE Re-extraction of original RC Re-extraction Confirmation RL Reporting Limit RPD Relative Percent Difference of duplicate (unrounded) analyses Relative Response Factor RRF RT Retention Time ``` ### QUALITY ASSURANCE METHODS ### REFERENCES AND NOTES Report Date: 09/20/2006 | RTW | Retention Time Window Sample ID A 9 digit number unique for each sample, the first six digits are referred as the job number | |------------|---| | SCB | Seeded Control Blank | | SD | Serial
Dilution (Calculated when sample concentration exceeds 50 times the MDL) | | UCB | Unseeded Control Blank | | SSV | Second Source Verification Standard | | SLCS | Solid Laboratory Control Standard(LCS) | | PHC | pH Calibration Check LCSP pH Laboratory Control Sample | | LCDP | pH Laboratory Control Sample Duplicate | | MDPH | pH Sample Duplicate | | MDFP | Flashpoint Sample Duplicate | | LCFP | Flashpoint LCS | | G1 | Gelex Check Standard Range 0~1 | | G2 | Gelex Check Standard Range 1-10 | | G3 | Gelex Check Standard Range 10-100 | | G4 | Gelex Check Standard Range 100-1000 | | | The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current | | | ation used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) | | | The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the | | | ng limit. The control limit is represented as +/- the RL. | | , opor c i | The second control of | ## CHAIN OF CUSTODY | | A C | NS SE | SEE | | | R | | | | | | 18 (g) | | | | | | | - 1 | Lag | Proj | Ş. _Ç ığı | Į. | Sam | Phone:
Fax: | Z41/
Unive | STL | | SE | | |-----------|----------------------|----------------------------------|---|-----------------|--------------|--------------|--------------------|------------------------------------|----------------|--------------|--------------------------|-------------------|---|---------------|------------------|------------|------------|---|------------------------------|---|--|---|----------------|--------------------|--|---|------------------------|----------------|------------------------------|------------------------------------| | | Ar S | | = Wastewater
= Water
= Soil | | RELINQUISHED | RELINQUISHED | Į, | | 10 | 9 | 8 | 7 | 6 | S | 4 | W | 2 | | aboratory
ID | | Project Location: | Project Name: | enett | Sampler Name: | e: 708-534-5200
708-534-5211 ₅ | 241/ bond siteet 🗼 🖰
University Park, IL 60466 | Chicago | TRENT | VERN | | | | | eous | 1 1.04 | - 1 | (b | \ <u>\</u> |) = 1) | lo a | Vê.Î | arii
 | 84 | u san | \$ } | 1 | | SH NO | jic
nos | 604E | MS-MSD | 100 st | On: | DIA TO | 3 | | -5200
-5211 |
1409
1409 | | | Z | | | | O <u>*</u> | [| SC= | Matrix Key | (6 | 5) | K | ير | 5 | 5 | 5 | 32 | 5 | 50 | 2 | 8 | 5 | 8 | Gorde and | 3 | Sur | 12 |)
 | | | 164
144
1 | 2777 J.
17. 30 | 7% 3 % | n e | | | | Mipe | | | 1.0 | (B) | 2 | (C) | 100 | 18/11/5 | | RJI | 2/2 | 1/59 | 808 | 10% | 00 | 10 | 0 | ر
م | 8 | 48.78 | m y y | | | . 1 | -200
-200 | | | | | | | | ate
Ciquid | Solid | | | 8 | 100 | 5 | ı | 0 | 0 | \ JB | 3 | Ŋ | 4 | 5-5 | いい | い。
/ | Client
Sample ID | 4408 | <u> </u> | 2000 | (b) | | | es
Santi | ~
≱4~≅. | | MON (| | | | | | de responses | - 1 | COMPANY | COMPANY | | 以 | DAG. | 1 | 7 | 10 | | W | 7 | attace | 1 / 2.04 | | | | Date Required Hard Copy: | Project Number: | (6) | | hamenyalayana. | | | | 1,000 | | | | o. Oujer ; | 5 4
Wide | 1. Plastic
2. VOA Vial
3. Sterile Pi | က | n e | 2 | fr.
(1-11-1- | 1 11 204 | | | | . 5. 8 | | 3 | * € | | | €11:101 | . v | | 7. 6.
1. j. ill
1. j. ill | o a p | | | E-Mail: | A . | Phone | Address: 2 | Contact: Z | Report To: | | | 97 | H. Amperulass
Widemouth Glass | Plastic
VOA Vial
Stenie Plastic | ntaine | | | مسرا | e ger | . j | | - 40
8 | 90 115
31 710, | -110) | 945C
194 . | lo
··· | | | 7/2 | | | 10
10 ₄₀ 1 | 9 | | | K. | 20 | 18 | 10 | | Į į | | | | Slass | С | i Key. | DATE | | C. | \alpha_i | N ₃ | N | N | | <u> </u> | VO. | M | S | | 多利 | | | ;;)
} | 35 | <i>i</i> | | | 10 | | シナン | | | | | | | ara tang | } | | DATEST | 18/2 | No. | 12/2 | 7.45 | 2115 | 30 | 200 | 2.5 | 8330 S | 8115 | 7155 | 25/2 | Time | | 95 | | | | 120 | 155/ | 1/2 | | I The | - | | | | 7 2 2
2 2 2
3 2 2 2 | | ra
Meri |) 4
, 46 | 1000 | 15 | 14 | N | S | | S | الم | 5 | 5 | 4 | 口 | | 100 SM2 | atrix | , ag 3 | Preserv | #/Cont | Refr | | 15 | 水。 | アルカンス | 1200 E | | | CII CI | None None | NaOH/Zh, Cool to | HCl, Cool to 4° H2SO4, Cool to 4° HNO3 Cool to 4° | reserv | 0 94
0 4 | 58.51.12.85 | | 0 | 6 | 0 | 0. | 6 | O | 0 | 6 | 0 | 5 | 0 | Comp | o/Gra | ab 🎺 | Serv Inte | Cont. | Refrg# | Server Con | Lý. | 10 | | C 32 8 18. | `. | | Chinado i | 3. | - 00 = 1
- 00 = 1
- 00 = 1 | 7 4 4 5 4 5 4 5 4 5 6 5 6 5 6 5 6 5 6 5 6 | ative K | TIME | TIME | | n Sets | 1,150
8 27 | 12 | संह का
अवस्थ | uda; | 10
2 M | X | X | X | > | \times | Mens | 77 | IA | | | | 17.5 | ers. | 1. | |) 3 V ~ [2 | | | מי מי | £ | e Terr | | ्य
इ | 131W | N | \
 X | - > | X | X | X | × | × | 5 m | 180
35 | | 3 | 1 | 80
PCBS | <i>8</i> 2 | 1 J. 1 | | | | | 5
168 | -0 }
-0 } | 3 | Yntasser
Yntasser | | | of Coin | 10
10
10
10 | | | Jurgi, | | 186 - E | Tion. | 10 (E) | \$ 664 A | 1 244
173 | ried
Males | 1399 | 144
1 | Present | e griš
sta | <u> </u> | | 1 (C) 1 | ermini | | ir. | | | | | | 200
1017/5 | 10\ \x:' | <u> </u> | _ | | arn Trant | 4 | oner
Despe
n | 078 .
348 | COMM | RECEIVED B | kegel√ed by | 10 F 13 | कार सार
संद्यांच्या
संबद्धाः | 200 | [8] (7)
 | 160 d | | | | | | | 14/947 | act 1 | ./ <u>*</u> □] | te se | | | | P0#: | Fax: | Phone: | Address: | Company: | Bill To: | | † l ahar | y | | 1992259.
10978.
1696
21. se | NIS 5 | , ED BY | ED BY | n ir | 1 | in : | 3 8845 | 13.5 | 5112
[m16] | 9 | | 1 .av.
1 3eft | | | e** | Maris Willia
D. Bell | 38 88
15 14 | ngst ja
Norda | | 100 | | i esc
karov | | 189
1800 | (E) | Jesel
Viceik | | | storiae | | | | | (b) | (6) | | - | ļ | | <u> </u> | <u> </u> | ļ | e | | - | | | | | | | | | | -41mg | . (*** <u>*</u> | no) | 1 | | | 'n | | 29-3)
KH N | A. i | 30 h | | |)
 | # 010
3 | 9.3 | | 1.00 | | | <u> </u> | 200 | | | 1 | alia keri da
Berasar dala | Pagnij | | | | | 1346,
13 | 1 "A"
1 01-2 |) [1]
 <i>1</i> | | 7 / 2 | - | | | | | enga ef s | | | | | Taylor y | 2011 | | 67 - 48
 E | | | | 83 | | | W 1 | h cost | | sig
englis | | | | ⊕Quote: | \$ 12 ACM | | | | ` | | | - 1 | effikki †
Turk
profiterii | i
Susan
Angra A | í | Gk
GST4 | rhw s | 513d
2004 | 141 | 1 2 | 1 | | | 1 , | | | | | | Market / e | | 275 | | | | i um
id pir | 10 e4
10 (21) | and S
Arysid
174 | 1 | 7 Jan 16 | ` | | | | | | E. | 15/1) E | : CO | 10.84 | . 25/76 (| | (11 10) | 1 | | 1 | 8 8 | | <u> </u> | | 5 7 | c bela.a. | (\ \ \ \ \ \ (\ \ \ \ \ \ \ \ \ \ \ \ | 1 441.3 | | | | tr _i g ; | 37-7 | 3 | 57) | | | | | 1. | ∂ B
)T: | oliowija
ne fo | | COMPANY | CONTAINY | : <u>₩ე</u>
« . | i ete | | 1000 | ā <i>ра</i> ;
ц (УС): | | , | | -1 | - | - | 17.34
31.00 | u <u>ktiri sara</u>
Vitar | 18 T | - 11 Fy | | | | | 100.66F | #3‴U
30 og | Solid
Solid | -30 July 1 | William III | | | | S | r striC | TV C | <i>1</i> 069 | e E | . 73.5
O 13. | | 222 | 34-72 | M KO U K
M Wasi M | - | - | - | 3,. | - | - | | sh to be
see in | (1) (8/) | Name - Name | | | | teb. | 十 57 | 8 02 | iovila: | | s | | | 1 | 973 | i sebici | - 1 | JO(9) | (3 s)
24 | 1 1 | (C) (20%)
91 (d) | | 3 3 | A COM | | | - | | | | | . shao | | ampi
, | Yes | | Within Hold Time | | empe | Xec | b | Lab Lot#
Package Se | haded | | | Ţ | ्ड
• ड | Course | | . 95° | | | ж - | 1906 | . e . | 8 | | | | | | | < 40 | Additional Analyses / | | | Yes No (NA) | (es | | (2.3) (| eratu. | Yes No | (Yeg | یل #Ab Lot
Package Sealed | Areas | | | | Ladin | r: X | 646 | DATE: | | | | 0.8 | v* 3 | 5 - 4 N | | | - | | | | я.
Моо | | 1 | abels a | |)

 80 | Ē |)
(2 | o o | No ce | No | Seal (| For In | | | 45 | B | ···· X ··· Š | | ্য কুট | | 1 | V Mey | | y 6 | n kon
Ne ko | 1 | | | TE | | | z <mark>1</mark> 1898 (
21 (| | | nd C | \\E _{\(\) | | | (2.1) | of C | ò | | |) termal | | | | 8 | |
 }¢∟ | ios:
Is: | | | 2) (c) | ALE
ALE | 1 | 7 5.14
F-1)- | 500
100 | *************************************** | | | | - | | /ses/ | 2 | Sample Labels and COC Agree | Té de |) Tes | , P | (2.5) | Temperature °C of Cooler | ្តម្ច | , | Si C | Shaded Areas For Internal Use Only | | | | tro | and Du | 1 | | TIME | | | | | | | | | | - | | G B D (2) | 1 2 20 0 1 | 6 | gree | Yes No | | Serv. | القا | | | Yes | amples | TyV | | SUCS 11.5 | | کے | § (| à. | * Princes | 0
0
 | oga or . | | | | page 1800 | | | | 100 N | - Chillian | - Nga? | رُون الله الله الله الله الله الله الله الل | 607 | Section Action | 3
3 | *************************************** | No NA | Presery, Indicated | 4 | | Yes) No | () | Samples Spalet | Q. | | S IDEDOI | STI | . Ch | icago (| 2) | | 0 | | | | | | | | | | | | | | Ì | 1 | | 5 ا | ated | | | Š | | 4 0 | | | | R. | - | | | | | | | | - | | A = Alf | 8 | # # | £ | Astri | RELINQUISHED BY | RELINQUISHED B | 1.46 | | 12 | . 21 | 20 | 10 | <u> </u> | 5 | 1 | . lS | 4 | B E | Laboratory ID SAMSD | | Project Name: | | Fax 708-534-5211 | University Park, IL 604665
Phone: 708-534-5200 | STL Chicago
2417 Bond Street | REZ
Za | SEVERN | | |
--|---|--|--|--------------------|--|------------------|--------------|--|---|---------|--|---------------------------------------|---------------------------------------|--|---------------------------------------
--|--|--|-----------------------|---|-------------------|--|--
--|---------------------------------|--|---|----------|------------------------------------| | 22 | 15 | DL = Drum Liquid | | Įą. | COMPANY | b) (mpany) | 15832553 | 1-5 22 DS | 381252 | SU215-3 | 3/195 | 5-561105 | 5.811.85-5 | 2-581185 | 15-5-1188 | 38 1165-4 | 581155-3 | SB1155-2 | Client
Sample ID | The second | Project | 1.00 | | 1666
1011
1011 | | | | | | | PARTY IN COLUMN TO THE | | is . | | Container Key. | | 100 mm | 1123 | 1. K. K. | 4'20 | 32 | 2. | 2.05 | | | ZHIN . | 1/50 | 8:10 | 24d 3:00 | Sampling
Date Ju | Date Required Hard Copy: / / / | Project Number: | | E-Mail:) Ozario | B 7516 | 337 | Address: 107 25 3 1 | | _\ ≅ | * | | or rolls | 5. Cool to 46 2 4 3 | 4. NaOH Cool to 4°. 5. NaOH/Zn Cool to 4° | 2. H2SO4, Cool to 4° | Preservative Key | er
or
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stant
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine
Stantine | DATES 202 TIME X | 2000 | | るへへとなる | するのと | 55 (\$0
55 (\$0 | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | < % | N N N N N N N N N N N N N N N N N N N | X O X | い。
に
大 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | Ma
Comp | o/Grab | Volume
Presery | The second second | Refre# | BETATION OF THE STATE ST | 77000 | 1299 151 17 6 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 51 16 5 | Service of the servic | | | | amint of Ominana Tourish to Launtin | 50
.8.0
.3.0
.3.0
.3.0
.3.0
.3.0
.3.0
.3. | ulum marakan perangan | 3 Y
3 TO 1
2 S | COMMENTS | RECEIVED BY | RECEIVED BY | | | | | 2002
2003
2003
2003
2003
2003 | | | 00000000000000000000000000000000000000 | | X | X | 3.7 | TPH
8688
POS | <u> </u> | | | | (a) | Phone: | Address: | Z jevu | Contact: | RH To | | es Jas | | ont or
enterior | in the second se | 5 | 1000 | | | | | | N 1 | 13.8 | 75 | | <u> </u> | | | 14.1
1 2
1 34.6
1 34.6 | 3. T. | 201 - 192 <u>194 1</u> 95 197 197 197 197 197 197 197 197 197 197 | | The state of s | The Succession of Successi | | | north and the same of | ackud
sterkud
strke
grakud
strke
grakud
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strke
strk
strke
strk
strke
strk
strk
strke
strk
strk
strk
strk
strk
strk
strk
strk | | | | | - | | e de la companya l | | COMPANY | | | 3 #3 2 3 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) | | 6 d | | | ngirga | ļ | | 95 | | efin to | Sample I | | | Within | | 63 DAG
3 787
3 15 78 | 20
20
20
20
20
20 | | 8
8 | Shaded Are | | | | Bill of Lading | | Date Received り/ つ | DATE | 30 F | | | | | | 5
57
57
57
53
53
56 | シンド
(数)か
(数) | 0 | | - Annual Control of the t | | A CONTRACTOR | iitional Analyses /-I | Sample Labels and GOC Agree Yes No COC no | Yes No NA Yes | | Within Hold Time Preser | Temperature °C of Gooler | | | aled T | #) AOTA | Shaded Areas For Internal Use Only | | | TL. | Chic | Delivered (S) | 06 | TIME | 1000 | \$ Section 1 | on a 1/4/00 | to P.C. Material | | St. College | 300 | | . 179 | - who | A CONTRACTOR OF THE | Additional Community of the | o vice | marks. | COC not present | Yes No NA | Yes No NA | Presery, Indicated | | Yes No | Yes No Samples Intact | Samples Sealed | | of. | | : | ۵ <u>۹</u> | S | į | * | arkati | RELI | | 35000000 | | u v | | | | | | | | e de | 22 | 2 | 1 | | Lab | Lab PM: | Proje | <u> </u> | Proje | Samı | ax | Phone: | Univers | 2417 B | nadical | T OF | | | |--|------------------------|---|--------------------|---|-------------------|----------------------------|---------------------|-------------------|--------------------------------|------------------------------|--------------------------|--|---------------------|-----------------------------------|-----------------------------|--------------------------|---------------------------|--------------------|------------|---|----------------|-------------------------
--|-------------------------------|--------------------------------|-----------|------------------------------|---------------|----------------------|---|---|--------------------------|------------------------------|--------------------------|----------------------------|----------| | į | # Qi
Ar | Sludge Miscellaneous | Soll | - Wastewater | d Var - Parker de | RELINQUISHED B | RELINQUISHED | 7.4 | | | | 100 | | | | | | | Ċ | 26 | 25 |) | aboratory
ID | ノ | Project Location: | 7 | Project Name: | Sampler Name: | 708-534-5211 | : 708-534-5200 | sity Park, II | 2417 Rond Street 32 (3) | | | | | | | | eous | | | | (b)
(6) | В | | 39.55
-356
(1475) | 10 8
- /4
11 0 | #8.
•# | (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | 6 | Gr. | ng v
sete | iteix
- Gr | 3 () ()
4 () () | s De | in Color | i ja | | (g.) | MS-INSD | 961)
92
93 | | 1 | ~ V | es in | E INV | 5200 | L 60466 | 2
80
50 | 100 | | | | | | O ≨

 | | DS | | l l | (0) | | 9 | | er a | 1516) | | | - | | w | , r | | SB | SK | 100 | 1 | |) | ام
ا | 9 | 30, | | | adaria
2 Jila
18 | | | 941 - 9C | い
E | | | | | Wipe | Drum Liquid
Leachate | Drum Solid | Sediment | 26 H
26 G | | | |) (J.)
388 | ° (° | 1 - 3
1 - 3
1 - 3 | je
gjen | | u isi | | | | - | 1145 | 1155 | 100 | 101 | ု တို | o s
Ings | - 3
- 3 | er v | (a) | _ | 10
10
10
10 | -11. | . * * * * * * * * * * * * * * * * * * * | 1,11
180 ()
184 () | 9条
(7)
(7) | | | | | | | - | | MOISC
MOISC | | OMPANY | OMPANY | ΙÌ | ide
offil | ind.)
Idaa | entr
boo | 1 | 1 | . 1 | Britisë
Ngjerio | .29 | 9. O | | 13
(20) | 2 | ָ
עו | 10 Z
30 Z | | | Date Required | 0 | Project Number: |) | | -1∞
∉ | jan. | · 発。 | and. | 1947
1945 | | | | | | 4 ru e | ω.
3()
3() | | Markey of Schools | omeoni. | | 4 A=4 3 | men
Maga | ter (2 | in the second | 1 43 60 | ···· | CT MT | | 3001 | , .r | W-1-140 | | | in in | (A) | 11. IMPA - MANAGA DI | Fax: | uired | 02200 | lumber: | p, | A CAMPAIN | mana da | 2 | Phone: | R۸ | Address | Contacts | | | | then | Amber Liass Widemouth Glass | berile Plast | Gontainer Key. 1. Plastic 2. Vna Vial |
 | | S. J. | | 1400
1400
1400 | <u>+1911</u>
. +36
+36 | ner j
rei i
reijut | erio
o it
o es | . 1s
- 1s
- 4 | | ese i
eses
sont | ming
end | 80.000
313-11
516-1 | | - | *** | 70,06 | ř
Ž | Sar | | | 070 | | r | 8 | | 9/3 | 1000 E | De L | N 1. | " "TJ_ | -1 | | | : | Glass | 9 ਨ: | er Key | | DATE | DATE DATE | | ንፙ | 0.0 | 684 | .1} | المائي. | 67 |) Jr | 25 | | 17: | 6 | 5. | | | ऻॹढ़ ॿॕऀ॔॔॔ऻ | | 115 °
≯∵o | 2 | | | 3 |).
 | ¥45 | 3730
1273
121 |)/
 | | となる | : | | _ | 7.6 | 4, 10, 1 | | 86 JUG | 91
60 | ŢŢ
ort | | | a) (j
arre | 지수
120명
158 | MOX
DIR
DIR | 3 (S | 1:11 | .At.
Gen
Nert | ()()
1 (e)
505 | ing gand
Jack | 5,812gh | 487
3 18 | 5 | 0 | 7 | | ਲ |
 | 311 | | | | 1 | 9 | 7-75 | /- <i>)</i> | 10 | N D | | | | STLC | 5. √Cool to 4° 7. None | NaOH/Zn; Cool to | 3. HNO3 Cool to 4 | Present
HCI, Cool:
H2SO4 C | o kr | reri
reri | 1 12
00
21 11 | | OTA | 910
1861
3.6 | tied
Car | 089 | : J | nib
soa:
vhe | BOME
BANA
none | 765
(977) | ingr
kn., | 16 | 0 | . 6 | ジレ | - 3 | | | ma l | Preserv | Volume | # / Cont. | | 1 | 3 | 2 | 126 | Dort. | Depling | ` | | Chicago is | | Cool to 49 | 2 D | Preservative Key
Ci, Cool to 4: | | 3MIT | | 10 | 10 SH | rort
and | 28.50 | . v / 1 5 | 8 | ර්ලා
දැල් | uai ^a ri
Basi | e
eide | graz
Des | 1 | | | > | ζ | PCR | | - | | | | | 200 | J.o | in p | 2 | | > | | | STL Chicago is a part of Severn Trent Laboratories. Inc. | 10 | en
Er c | | 1815QE
20100 | | ery
Sel
d S e | | 59 | 19(1)
10-41
1860 | 000
2000
2000 | do | CI: | 163 | | Sheet
Helvi | 8 | 0457
841.8 | | <u> </u> | | ·
· |) (3)
) (3)
) (3) | 7PH L | | eeq
il Mo
O yeru | | | | | | issi
ete | 50f | 1 | 1 | 9165
2000
2000 | | | Severn Tr | **
Y: | erour
Vesso
Vesso | 7910
791
797 | COM | - | RECEIVED | | | inis
ing
in i | 21 Q C | | 11 (**
* 20)
21 * 5 | | и (9-е
О
: (-) (| 1.+ []:
* | | | | | $\langle \rangle$ | ζ - | 35
34 (3 | TP440 | | ်
ဝ | | | | 912 | 2 · · · · · · · · · · · · · · · · · · · | 37
37 | Phone: | 登 8 数
日 33
日 23 | Address: | Contact | | | ent Labora | 9.3
V 1
189 |
16 - 61
36:35 | 975.
973. | COMMENTS | # 13 m | NED BY | WED BY | 1452 | vicia
Alber | rnik
j si | | er er
Græk
Græk | | Oper
Oper
Oper | 10V \$ | 52.00
52.00 | 41.5 | 128 | | | .1 3:
≪,43. | 18:
18: | Paris Later | 2 V4 | 6 1 - 6
148 (141 | | 34 | | | (90)
(4) | 5 i
DVn | а,
е!н | | (18 j | | ^ | | itories. Inc | 10 | | | 11 9 5 | 1 1 | (b |) (6 | 3) | · /* | CHC | 1 - V | | 631 | امۇلاريا | Feli | ļ., | 1970 IS | 7 34 9
8 | | | 1,5 | | e divin | | Q | | | | | ja s | 3350 A | lua. | 5 | | 407 | | | ,, | Si | 3 €8 | , BV | HELLING
HELLING | | | | t e | Seri
Seri | or i | \$1.54 | 1 [†] 3 | (April) | 011
7 94 | 4*18
5-5 | T C | | 3 | - | | | ĮĬ. | s is a strain
Library
Sa Nigasyaya | 7500.
200
7 5 fr | 31 8
1201 7
121 4 | | | | | 가 됩
주
2 가 | 1 | len:
leas
, q | or
act |) 546
()770
() 181 | مم ا | ~.
: | | | γi | sunta
Boss
Idabi | : 344 | Sec. 17. | ere
ere | wys
Vál | into
 | | 18 :
18 : | 911 T | | | 7/1 | (大)
(1)
(1)
(1) | 3170
7-80
98 | EZ
VÆ DY | | 1 | | | | 3)
10) | 96 500
\$557 0 | | <u>nest</u> | | | | 32W2 | gerts
escre | , A. | 82
170k
170 | 1 . | 90
90 | Clorin
Kronin
Croris | • | | | | | - *** A | | 2 %
4 £ | COM | OMPANY | ()
 | IME | .cit. | | | . 43 | a ar
acia | io : | A | | | - | | - (5 | | passo v | | uma
Okbi | 1285 | | | | (4.) | l | 77.73
60 % | | | 736 | | | | G | es
Rati | , | ame
e Co | 11 | | | | ones
Sec | | 1 | | 3 | .99°
 | pro A
Drugal | 196年和
1 生 : | W () | 3 | | | 7 .
.6 | - Q | in a substitution of the contract contr | , :į | 196
2362 3 | (0.0000) | | 70 | | | 11. | 3 | leb
ov | (ag | is de la state | | | | | | | v1 <u>O s</u> | | | 3 5 | y 5 | | 05
06 | \$ 0 | | | .51 | G | yo; - | | | | | | | | | Samp | Ye | D | **** | W# | | Temp | | Re | ra
a | Lab | | | | 2 | ୍ୟ :
ଅଧି | Courie | Date R | | 910
NG | 1 | 9 31
(0
(1) | | | | ୀ - | -5 | . ය
කාරය
සිර් | .ik/
.:
.C :: | 37 | | , | | *************************************** | 1 | . G.S. | Additional Analyses | Yes | Sample Labels and COC Agree | Yes No NA | pH Check OK | Yes No | E E | | Temperature "C of Gooler | Yes No | Received on Ice | Package Sealed Yes No | Lab Lot# | : | | | ž | ading o | ा
।
। अक्र | Date Received | | ا
الم | £. | | ~
5(T): | l va
Piar | | - 1 | e/. | es 17
9 90 | 990年
2013年
2013年 | 1 | | | | | *. | | onal Am | Yes No COU not present | els and | NA | K OK | No | A Time | | Ĉ | No | on Ice | Sealed
No | | ر | | | | 1,11 | * | en 5.6 | | , | 0 | _ | l . | (196)
 | | | . 20 | | iV
oʻl
amin | 94616
91 | | | | | | | alyses | G | (100 | | Re | | | 1 | Coole | | | Ú | もじと | >
5 | | (A) | | | Hand De | 7 | | TIME | | | | , | | | | | | | | | | | 4 197 | oraș
Dich
Mer | / Re | OG not | gree | es N | s CI ₂ C | 8 | Acos. | | 7 | Yes No | ample | ampies Seal
Yes No | | <u>ነ</u> | | STL-8208 (0 89 0) | | Chic | elivered. | 2 | | Ē | 000 | i | verpakith. | | wax. | sum for | | wer waren | dig-s, s | * | 11,270.00 | AZZ SZAF - | . 10.000 | | | s. 3 | arks
| presei | | Yes No NA | Res Cl ₂ Check OK | Yes No NA | nding. | | | No | Samples Intact | Samples Sealed | (OE | | | 0800 | | Chic | cago |] | | | | | | | <u> </u> | | | | | | | | | | | | | T | | P | 爿 | A | 2 | | | | • | 9 | 2 | | STL Chicago Intra-Laboratory Internal Sample Custody Transfer Record Client: 509 Job No: |
and the state of t | - 1 - 0 - FT | STANTAN TO THE THE STANTAN TO THE STANTAN TO THE STANTAN STANTANT THE STANTAN STANTANT THE STANTAN STANTANT THE STANTANT THE STANTANT THE S | | | and the second s | 111111111111111111111111111111111111111 | | | | a, | 1. 14
23% | | 3 | (-) | | 13-23 26.27 | しんし | 20.10 | 6217 1475 | (11, 24,2) | | CRO. | Sample No. | |--|---|--|--
--|--|---|--|--|--
--|--|--|------|---------|------|-------------|------|-----------|-----------|------------|---|--|------------------| | | | | | - Library Libr | | | | | | *************************************** | - Luciana | | 13 |)
} | | n ope | 2047 | W, JUS | 000 | 0 V | 7 | 113-23 | Analysis | | | | | | 7 | | | | | The street of th | And the second s | And the state of t | (b) | (6) | | | | 41: | | | | | *************************************** | Relinquished by: | | | | | | | | | | - A | | | | (k | o) (| 6) | | | ļ | | | | | | Received by: | | THE PARTY OF P | | | 14 | | | | | | | | | | | <u></u> | | 0/12/06/10 | 0 | 1/9/01/01 | 09/108/05 | | 7 | 7 7/06 11 | ite . | | | | | And the second s | The same of sa | | | | A STATE OF THE PERSON P | | | | | | 100 W | 13.W | 1630 | 330 | 1.60 | 0730 | | | | Time Comments | | | the total major worse many may be a second or | | | | *************************************** | | | | The state of s | | | And the second s | | - | | | | | | | | A CONTRACTOR OF THE | , w | K, | rpjsckl | Job Sample Receipt Checklist Report | V2 | |---|--|--| | Job Number.: 248531 Location.:
Customer Job ID:
Project Number.: 20006654 Project
Customer: SCS Engineers, Inc | Job Check List Date.: 09/07/2006
Description.: GSA - SLOP | Date of the Report: 09/08/2006
Project Manager: rcw | | Questions ? | (Y/N) Comments | | | Chain-of-Custody Present? | Y | | | Were samples dropped off at or pick | ked up by STL? N | | | Custody seal on shipping container? | ······ Y | | | If "yes", custody seal intact? | Υ | | | Custody seals on sample
containers? | N | | | If "yes", custody seal intact? | | | | Samples iced? | Y | | | Temperature of cooler acceptable? (| 4 deg C +/- 2). Y 2.3,2.1,2.5 | | | Samples received intact (good condi | tîon)? Y | | | Volatile samples acceptable? (no he | eadspace) | | | Correct containers used? | Y | | | Adequate sample volume provided? | Y | | | Samples preserved correctly? | Y | | | Samples received within holding-time | ne? Y | | | Agreement between COC and sample la | abels? Y | | | Radioactivity at or below backgroun | nd levels? Y | | | A Sample Discrepancy Report (SDR) v | was needed? N | | | Residual Chlorine Check Required? | | | | If samples were shipped was there a | an air bill #? Y | | | Sample Custodian Signature/Date | Y | | | | | | Page 1 | Address To cause a package be half at a specific Fedix location, print Fedix ideas Note. City 10 11104 1120 1120 1120 1120 1120 1120 1 | Company Address Address To Recipients Name Recipients Address | Express B | |--|--|-----------------------| | Total Baydonijas Total Baydonijas 8 NEW Rējs identitā i 10 No Signature 10 Required totalentitā i 10 reducino automatora paramentario p | Phone Screen before in Thereby subgress and the desired of hot of the phone in the desired of hot of the phone in the second of the phone in | 563 3269 2650 Titus | | Total Weight Total Declared Value Total Control Declared Value Total Control Declared Value Total Control Declared Value Total Control Total Control Total Contro | Indicate state of the control | Service | # CASE NARRATIVE # Severn Trent Laboratories Chicago GC Volatile Case Narrative SCS Engineers, Inc. GSA – SLOP JOB# 248531 Method GRO - 1. All required holding times were met for the analysis. - 2. The MB (Method Blank) samples did not have any results above the reporting limit. - 3. All samples had all surrogate recoveries within the in-house QC limits. - 4. The LCS (Laboratory Control Sample) samples had the spike recoveries within the in-house QC limits. - 5. MS/MSD (Matrix Spike/Matrix Spike Duplicate) analyses were not performed on this job. The MS/MSD samples had the spike recoveries and the RPD value within the in-house QC limits. - 6. All initial and calibration verification standards were within the control limits. - 7. The samples were analyzed for GRO (Gasoline Range Organics) based on SW846 methods 5030, and 8015G. A HP 5890 gas chromatograph equipped with a Tekmar concentrator and vial autosampler was used for the analysis of these samples. Samples -13 through 16, 19, 21, 23, 26, & 27 were analyzed undiluted by the low-level method. Samples -17, 18 (100x), 20 (200x) and -22 (50x) were analyzed by the high-level methanol extraction method. | (b) (6) | 0 10 -1 | |------------------|---------| | | 9-13-06 | | William R. Estes | Date | | GC-VOA Analyst | | # QUALITY CONTROL SUMMARY # STL Chicago is part of Severn Trent Laboratories, Inc. a,a,a-Trifluorotoluene 4-Bromofluorobenzene (surr) | Job Number.: 248531 | SURROGATE | RECOVERIES | REPORT Report Date.: 09/13/ | 2006 | |-------------------------------|-----------|----------------|-----------------------------|------| | CUSTOMER: SCS Engineers, Inc. | PROJEC | CT: GSA - SLOP | AITN: David Brewer | | | | | : TPH - Gasoline Range C
: 8015G | Organics (GRO) | | | : Solid
: 188924 | Prep Batch: 188923 | |-------------|---------|--|----------------------|-------|------|------------------------------|--------------------| | Lab ID | DT | Sample ID | Da | te | ATFT | BRFLBE | | | LCS | | | 09/10, | /2006 | 96 | 97 | | | MB | | | 09/10, | /2006 | 90 | 85 | | | 248531- 13 | | SB1155-2 | 09/11, | /2006 | 89 | 77 | | | 248531- 14 | | SB1155-3 | 09/11 | /2006 | 78 | 67 | | | 248531- 15 | | SB1165-4 | 09/11 | /2006 | 78 | 64 | | | 248531- 16 | | SB1175-4 | 09/11 | /2006 | 81 | 73 | | | 248531- 19 | | SB1195-3 | 09/11 | /2006 | 84 | 82 | | | 248531- 21 | | SB1215-3 | 09/11 | /2006 | 84 | 73 | | | 248531 - 23 | | SB1225-4 | 09/11 | - | 90 | 104 | | | 248531- 26 | | SB1135-5 | 09/11 | | 76 | 67 | | | 248531- 27 | | SB1145-3 | 09/11/ | | 78 | 69 | | | Test T | est Des | scription | Limits | | | | | | | | rifluorotoluene
luorobenzene (surr) | 70 - 130
56 - 120 | | | | | | | | : TPH - Gasoline Range C | Organics (GRO) | | | : High/Med Level
: 189016 | Prep Batch: 189015 | | Lab ID | DT | Sample ID | Da | te | ATFT | BRFLBE | | | LCS | | | 09/11 | /2006 | 97 | 96 | | | MB | | | 09/11 | /2006 | 95 | 90 | | | 248531- 17 | | SB1185-2 | 09/11 | /2006 | 94 | 104 | | | 248531- 18 | | SB1185-5 | 09/11 | | 93 | 100 | | | 248531- 20 | | SB1195-4 | 09/11 | | 94 | 95 | | | 0/0574 00 | | SB1225-2 | 09/11 | /2006 | 93 | 91 | | | 248531- 22 | | | | | | | | 70 - 130 63 - 182 ATFT BRFLBE | | Job Number.: 2 | | CONTROL R | | Report Date.: 09/ | 13/2006 | | |--------------|------------------|-------------|---------------|--------|-------------------|---------|------| | CUSTOMER: SO | CS Engineers, Ir | nc. PROJEC | T: GSA - SLOP | | ATTN: David Brewe | • | | | QC Type | | Description | Reag. Code | Lab ID | Dilution Factor | Date | Time | Test Method.....: 8015B MGRO Equipment Code...: INST1314 Analyst...: wre Method Description: TPH - Gasoline Range Organics (GRO) Batch.....: 188924 | LCS Laboratory Control Samp | e | G061 | 10DSA | 188923-002 | 09 | /10/20 | 06 1820 | |--------------------------------------|-------|-----------|-----------|------------|----------------------|--------|---------| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value QC Calc. | * L | imits F | | Gasoline Range Organics (GRO), Solid | ug/Kg | 398.255 | | 400.000 | 5.400 U 100 | - % | 70-130 | | Job | Number.: 248531 | QUAL | ITY C | ONTROL | RESULTS | Report Date.: 09/ | 13/2006 | |---------------------------------|--|------------|-----------|------------|---------------
-------------------|------------------| | CUSTOMER: SCS En | gineers, Inc. | | PROJECT: | GSA - SLOP | | ATTN: | | | QC Type | Description | | | Reag. Code | Lab ID | Dilution Factor | Date Time | | Test Method
Method Descripti | : 8015B MGRO
on.: TPH - Gasoline Ra | nge Organi | cs (GRO) | | ode: INST1314 | Analy | st: wre | | LCS Lab | oratory Control Sample | | ſ | 06111DSA | 189015-002 | | 09/11/2006 1305 | | Parameter | /Test Description | Units | QC Result | QC Result | True Value | Orig. Value QC Ca | lc. * Limits | | Sasoline Range Or | ganics (GRO), High/Me | ug/Kg | 20191.900 |) | 20000.000 | 220.000 U 101 | % 7 0-130 | Data File: 09110614 009.d Report Date: 13-Sep-2006 05:04 # STL Chicago #### RECOVERY REPORT Client SDG: 122105icalgrom Client Smp ID: ical chk Fraction: VOA Operator: estesw Client Name: EPA GC Sample Matrix: SOLID Lab Smp Id: ical chk Level: LOW Data Type: GC DATA SampleType: LCS SpikeList File: ICALCHK.spk Quant Type: ESTD Sublist File: GRO.sub Method File: \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Misc Info: ical chk | SPIKE COMPOUND | CONC
ADDED
ug/Kg | CONC
RECOVERED
ug/Kg | %
RECOVERED | LIMITS | |----------------|------------------------|----------------------------|----------------|--------| | S 5 GRO | 400.00 | 414.92 | 103.73 | 85-115 | | SURROGATE COMPOUND | CONC
ADDED
ug/Kg | CONC
RECOVERED
ug/Kg | %
RECOVERED | LIMITS | |-------------------------|------------------------|----------------------------|----------------|--------| | \$ 3 a,a,a-Trifluorotol | 20.000 | 19.154 | 95.77 | 60-150 | | \$ 9 4-Bromofluorobenze | | 19.196 | 95.98 | 60-150 | Data File: 091006a14 009.d Report Date: $13-Sep-\overline{2}006$ 05:04 # STL Chicago #### RECOVERY REPORT Client SDG: 080305 Operator: estesw Client Smp ID: ical chk Fraction: VOA Client Name: EPA GC Sample Matrix: SOLID Lab Smp Id: ical chk Level: LOW Data Type: GC DATA SampleType: LCS SpikeList File: ICALSPIKE.spk Quant Type: ESTD Sublist File: GRO.sub Method File: \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Misc Info: ical chk | SPIKE COMPOUND | CONC
ADDED
ug/Kg | CONC
RECOVERED
ug/Kg | %
RECOVERED | LIMITS | |----------------|------------------------|----------------------------|----------------|--------| | S 3 GRO | 400.00 | 400.98 | 100.24 | 85-115 | | SURROGATE COMPOUND | CONC
ADDED
ug/Kg | CONC
RECOVERED
ug/Kg | %
RECOVERED | LIMITS | |-------------------------|------------------------|----------------------------|----------------|--------| | \$ 2 a,a,a-Trifluorotol | 20.000 | 19.623 | 98.12 | 33-131 | | \$ 4 4-Bromofluorobenze | | 19.882 | 99.41 | 26-146 | #### 4A VOLATILE METHOD BLANK SUMMARY Lab Name: Contract: Lab Code: Case No.: SAS No.: SDG No.: 248531 Lab File ID: 091006A14_011 Lab Sample ID: 188923-1MB Date Analyzed: 09/10/06 Time Analyzed: 1746 Matrix: (soil/water) SOIL Level: (low/med) LOW Instrument ID: INST13-14 THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD: | | | | | | |------------|-------------|--|--|---| | | EPA | LAB | LAB | TIME | | | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED | | | | _========== | | | | 01 | 188923-2LCS | 188923-2LCS | 091006A14_012 | 1820 | | 02 | SB1155-2 | 248531-13 | 091006A14_022 | 0009 | | 03 | SB1155-3 | 248531-14 | 091006A14_023 | 0044 | | 04 | SB1165-4 | 248531-15 | 091006A14_024 | 0119 | | 05 | SB1175-4 | 248531-16 | 091006A14 025 | 0154 | | 06 | SB1195-3 | 248531-19 | 091006A14 026 | 0228 | | 07 | SB1215-3 | 248531-21 | 091006A14 027 | 0303 | | 0.8 | SB1225-4 | 248531-23 | 091006A14 028 | 0338 | | 09 | SB1135-5 | 248531-26 | 091006A14 029 | 0413 | | 10 | SB1225-4 | 248531-23 | 091006A14 030 | 0448 | | 11 | | | _ | İ | | 12 | | | | | | 13 | | | | | | 14 | | | ************************************** | | | 15 | | | ************************************** | | | 16 | | | | | | 17 | | | | | | 18 | | | | | | 19 | | | | | | 20 | | | | *************************************** | | 21 | | | | | | 22 | | **** ********************************* | | | | 23 | | *************************************** | | | | 24 | | | | | | 25 | | | | | | 26 | | | | | | 27 | | Accept awards, Author Andreas Securit Anneas Institute anneas, in white the said develope standard beautiful a | | | | 28 | | | Manager Service Annals Service | | | 29 | | | | | | 30 | | | | | | <i>3</i> U | | | | | | COMMENTS: | | |-----------|--| | | | page 1 of 1 FORM IV VOA 1/87 Rev. #### 4 A VOLATILE METHOD BLANK SUMMARY Lab Name: Contract: Lab Code: Case No.: SAS No.: SDG No.: 248531 Lab File ID: 09110614_011 Lab Sample ID: 189015-1MB Date Analyzed: 09/11/06 Time Analyzed: 1230 Matrix: (soil/water) SOIL Level: (low/med) LOW Instrument ID: INST13-14 THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD: | | EPA | LAB | LAB | TIME | |----------|---|-------------|---|----------| | | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED | | | | ========= | ========= | ======= | | 01 | 189015-2LCS | 189015-2LCS | 09110614 012 | 1305 | | 02 | SB1185-2 | 248531-17 | 09110614 017 | 1559 | | 0.3 | SB1185-5 | 248531-18 | 09110614 018 | 1634 | | 04 | SB1195-4 | 248531-20 | 09110614 019 | 1709 | | 05 | SB1225-2 | 248531-22 | 09110614 020 | 1744 | | 06 | | | | *** | | 07 | | | | | | 0.8 | | | *************************************** | | | 09 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | 16 | | | | | | 17 | | | <u></u> | | | 1.8 | | | | | | 19 | ************************************** | | | | | 20 | | | | | | 21 | | | | | | 22 | *************************************** | | | | | 23 | maker through armin shrolls about some shrolm variety and as American | | | | | | | | | | | 24
25 | | | *************************************** | | | | | | | | | 26 | | | | | | 27 | | | | | | 28 | | | | | | 29 | | | | | | 3 0 | | | | | | COMMENTS: | | |-----------|--| | | | page 1 of 1 FORM IV VOA 1/87 Rev. # SAMPLE DATA STL Chicago is part of Severn Trent Laboratories, Inc. | PROJECT: GSA SAMPLE -RESULT Q FL 85.4 14.6 6.8 J | Job Number: 248531 | |--
--| | | LABORATORY | | | T # | | SLOP Laboratory Sample ID: Date Received: Time Received: 6.3 | ST RESULT | | Rt 0.10 0.10 0.10 0.10 59 | S | | 1.00000 | | | g g | Date:0 | | NITS BATCH DT | Date:09/13/2006 | | Вгеже | 36 | | 09/09/06 1939 clb
09/11/06 0009 wre | The second secon | | ago Wr e Cib TECH | 1 | Data File: 091006a14 022.d Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 022.d Lab Smp Id: 248531-13 Client Smp ID: SB1155-2 Inj Date : 11-SEP-2006 00:09 Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-013S Misc Info: 248531-13 Comment : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Method Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 16:01 Cal File: 091006a14 008.d Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------|--------|--| | | | were never never days days with ready book book with very your news mean years never never days days book book book book book book | | DF | 1.000 | Dilution Factor | | Uf | 5.000 | Correction factor | | Ws | 5.000 | Weigth of sample extracted (g) | | M | 14.600 | % Moisture | | Cpnd Variable | | Local Compound Variable | | • | | | | | | CONCENTRA | ATIONS | | |----------------------|----------|--------|--------|--------|----------|-----------|----------|---------| | | | | | | | ON-COLUMN | FINAL | | | Compounds | | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | *** | | ===== | | | *=**** | | | | | \$ 2 a,a,a-Trifluoro | otoluene | 12.947 | 12.940 | 0.007 | 14317 | 17.7434 | 20.777 | (b) (c) | | S 3 GRO | | 7.504- | 22.318 | | 43708 | 5.78465 | 6.774(a) | (b) (6) | | \$ 4 4-Bromofluorobe | enzene | 20.499 | 20.488 | 0.011 | 11146 | 15.4620 | 18.105 | | | | | | | | | | | | #### QC Flaq Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation (BLOQ). STL Chicago is part of Severn Trent Laboratories, Inc. | | 80158 MGRO | Method | TEST METHOD | Customer
Date San
Iime San
Sample M | CUSTOMER: SCS | | |-----------------------------|---|--|----------------------------|--|-------------------------------|--------------------| | * In Description = Dry Wgt. | TPH - Gasoline Range Organics (GRO) Gasoline Range Organics (GRO), Solid* | % Solids Determination
% Solids, Solid
% Moisture, Solid | PARAMETER/TEST DESCRIPTION | | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | | | ND . | 83. <i>7</i>
16.3 | SAMPLE RESULT | | PROJECT: GSA | LABORATOR | | Page 3 | C | | 9 FLAGS | 7 D. L. | | Υ T E | | | 6.5 | 0.10
0.10 | MDL | Laboratory Sample ID:
Date Received:
Time Received: | SLOP | STRESUL | | | 60 | 0.10
0.10 | R. | 102 | | S 1. | | | 1.00000 | | NOTINI | | | | | | ug/Kg | % % | S11NN | Control of the contro | ATTN | Date:0 | | | 188924 | 188899
188899 | BATCH | 12.12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | David Brewer | Date:09/13/2006 | | | 09/11/06 0044 wre | 09/09/06 1942
09/09/06 1942 | DT DATE/TIME | Annan ann an Annan an Annan an Annan A | емег | | | ago | 4 Wre | 2 C C C C C C C C C C C C C C C C C C C | ТЕСН | in income and the second secon | | | Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 023.d Lab Smp Id: 248531-14 Client Smp ID: SB1155-3 Inj Date : 11-SEP-2006 00:44 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-014S Misc Info : 248531-14 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|--------|--------------------------------------|-----| | DF
Uf | 5.000 | Dilution Factor
Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 16.300 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | COL | NCEN | TRAT | IONS | |-----|------|------|------| FINAL ON-COLUMN | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | | |-----|--------------------------|------------------------|--------|--------|----------|---------|---------|--|--|--| | | | *** | | | ***** | | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.946 | 12.940 | 0.006 | 12597 | 15.6118 | 18.652 | | | | | S | 3 GRO | Compound Not Detected. | | | | | | | | | | \$ | 4 4-Bromofluorobenzene | 20.499 | 20.488 | 0.011 | 9636 | 13.3673 | 15.970 | | | | (b) (6) STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | 8015B MGRO TPH - Gasoline Range Organics (GRO)
Gasoline Range Organics (GRO), Solid* | Method % Solids Determination % Solids, Solid % Moisture, Solid | TEST METHOD PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1165-4 Date Sampled: 09/06/2006 Time Sampled: 11:00 Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 |
--|---|---|--|---|-------------------------------|--------------------| | Page 4 | Ą | 79.9
20.1 | SAMPLE RESULT Q | | PROJECT: G | LABORATORY | | 4 | 6. œ | 0.10
0.10 | FLAGS MOL | Laboratory Sample ID: Date Received: Time Received | GSA SLOP | TEST RESULT | | | 83 | 0.10 1
0.10 1 | R. D | 0: 248531-15
0: 09/07/2006
0: 10:00 | | S | | Advantage | 1.00000 | | DILUTION | | | | | The state of s | ug/Kg | % % | UNITS | | ATTN: | Date:09 | | Acceptance of the Control Con | 188924 | 188899
188899 | BATCH DI | | David Brewer | Date:09/13/2006 | | | 09/11/06 0119 wre | 09/09/06 1945 o | DATE/TIME | | ver. | | | STL Chicago | Σ
Π
Θ | clp
clp | TECH | | | | STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 024.d Lab Smp Id: 248531-15 Client Smp ID: SB1165-4 Inj Date : 11-SEP-2006 01:19 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-015S Misc Info : 248531-15 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---|--|--------------------------------| | THE STATE SAME SAME MADE SAME SAME SAME SAME SAME SAME SAME SAM | name make plane and damp make about head work have | | | DF | 1.000 | Dilution Factor | | Uf | 5.000 | Correction factor | | Ws | | Weigth of sample extracted (g) | | M | 20.100 | % Moisture | | Cpnd Variable | | Local Compound Variable | CONCENTRATIONS ON-COLUMN FINAL | | | | | | | 01. 0020121 | 2 2 2 1 2 2 2 | |-----------|--------------------------|--------|-----------|----------|----------|-------------|---------------| | Compounds | | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | m uz s | | *** | ====== | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.946 | 12.940 | 0.006 | 12628 | 15.6502 | 19.587 | | s | 3 GRO | Con | pound Not | Detected | d. | | | | \$ | 4 4-Bromofluorobenzene | 20.500 | 20.488 | 0.012 | 9224 | 12.7958 | 16.015 | (b) (6) STL Chicago is part of Severn Trent Laboratories, Inc. | Annual Market (Annual Annual A | | Method % % % % % % % % % % % % % % % % % % % | TEST METHOD | Customer Sample ID: Date Sampled: Time Sampled: Sample Matrix: | CUSTOMER: SCS Engineers, Inc. | qor | |--|---------------------------------------|--|----------------------------|--|-------------------------------|--------------------| | * In Description = Dry Wgt. | Gasoline Range Organics (GRO), Solid* | Solids Determination
Solids, Solid
Moisture, Solid
PH - Gasoline Range Organics (GRO) | PARAMETER/TEST_DESCRIPTION | mple ID: SB1175-4
d: 09/06/2006
d: 11:45
ix: Soil | ineers, Inc. | Job Number: 248531 | | Page 5 | · · · · · · · · · · · · · · · · · · · | 78.9
21.1 | SAMPLE RESULT 0 FLAGS | | PROJECT: GSA | LABORATORY T | | ALAA, — — — — — — — — — — — — — — — — — — |
&. | 0.10
0.10 | S MOL | Laboratory Sample ID: Date Received: Time Received: | - SLOÞ | EST RESUL | | | 63 | 0.10 | R.L | ID: 248531-16
: 09/07/2006
: 10:00 | | S | | | 1.00000 | دس دس | DITUTION | | | | | | ug/Kg | % % | UNITS | | ATTN: | Date | | | 188924 | 188899
188899 | BATCH | | David Brewer | Date:09/13/2006 | | | 09/11/06 0154 wre | 09/09/06 1948 :
09/09/06 1948 : | DI DATE/IIME | | ewer | 5 | | ago | ¥70 | 6 p | TECH | | | | Data File: 091006a14_025.d Report Date: 13-Sep-2006 05:22 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14_025.d Lab Smp Id: 248531-16 Client Smp ID: SB1175-4 Inj Date : 11-SEP-2006 01:54 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-016S Misc Info : 248531-16 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------|-------|--|-----| | DF
Uf
Ws | 5.000 | Dilution Factor
Correction factor
Weigth of sample extracted | (a) | | M
Cpnd Variable | | % Moisture
Local Compound Variable | | | CONCENTRA | PKONG | |-----------|-------| | | | FINAL ON-COLUMN | | | | 02, 0020121 | | |-----------------------------|---------------|-----------------|-------------|----------------| | Compounds | RT EXP RT | DLT RT RESPONSE | (ug/L) | (ug/Kg) | | A | mnus ss===== | | ====== | | | \$ 2 a,a,a-Trifluorotoluene | 12.946 12.940 | 0.006 13081 | 16.2116 | 20.547 | | S 3 GRO | Compound No | t Detected. | | (b) (6) | | \$ 4 4-Bromofluorobenzene | 20.499 20.488 | 0.011 10532 | 14.6103 | 18.517 (b) (6) | 38 STL Chicago is part of Severn Trent Laboratories, Inc. | | 8015B MGRO
Method | COHIBW 1831 | CUSIOMER: SCS
Customer
Date Sam
Time Sam
Sample M | 3.34 | |-----------------------------|--
----------------------------|--|--------------------| | * In Description = Dry Wgt. | TPH - Gasoline Range Organics (GRO), High/Med L*vel Gasoline Range Organics (GRO), High/Med L*vel % Solids Determination % Solids, Solid % Moisture, Solid | PARAMETER/TEST DESCRIPTION | Tak: SUS Engineers, Inc. Customer Sample ID: SB1185-2 Date Sampled: 09/06/2006 Time Sampled: 13:10 Sample Matrix: Soil | Job Number: 248531 | | | 39000
85_8
14.2 | SAMPLE RESULT | PROJECT: USA | A B O R A | | Page 6 | | Q FLAGS | 1 13.5 | | | | 510
0.10
0.10 | JOL | Laboratory Sample ID:
Date Received:
Time Received: | RESUL | | | 5800
0.10
0.10 | 7 | ID: 248531-17
: 09/07/2006
: 10:00 | 8 | | | 2.000 | NOTITION | | | | | ∪g/Kg
% % | STINU | A | Date:0 | | | 189016
188899
188899 | BATCH D | payid blewer | Date:09/13/2006 | | | 09/11/06 1559 wre 09/09/06 1951 clb 09/09/06 1951 clb | DT DATE/TIME | Section | | | ago | C C E C C C C C C C C C C C C C C C C C | TEO | | | Data File: \\CHI-MS1\chem\govoa\inst13-14.i\091106a.b\09110614..017.d Report Date: 13-Sep-2006 05:14 # STL Chicago Data file: \CHI-MS1\chem\qcvoa\inst13-14.i\091106a.b\09110614 017.d Lab Smp Id: 248531-17 Client Smp ID: SB1185- $\overline{2}$ Inj Date : 11-SEP-2006 15:59 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-017S Misc Info : 248531-17 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 100.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | | | | | CONCENTRATIONS | | | | |----------|--------------------------|--------|---------|----------------|----------|-----------|---------| | | | | | | | ON-COLUMN | FINAL | | Com | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | == == == | | ==== | | ====== | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.936 | 12.948 | ~0.012 | 15381 | 18.7292 | 21.829 | | S | 5 GRO | 7.569 | -22.338 | | 2406452 | 337.093 | 39288 | | \$ | 9 4-Bromofluorobenzene | 20.490 | 20.502 | -0.012 | 15338 | 20.8493 | 24.300 | STL Chicago is part of Severn Trent Laboratories, Inc. | | | Method | TEST METHOD
8015B MGRO | Customer
Date Sam
Time Sam
Sample M | CUSTOMER: SCS | | |-----------------------------|-------------------|--|---|---|-------------------------------|--| | * In Description = Dry Wgt. | % Moisture, Solid | Gasoline Range Organics (GRO), High/Med L*vel % Solids Determination | PARAMETER/TEST DESCRIPTION TPH - Gasoline Range Organics (GRO) | Customer Sample ID: SB1185-5 Date Sampled: 09/06/2006 Time Sampled: 13:25 Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | | Page | 13.2 | 36000 | ۵ | | PROJECT: GSA | ABORATORY | | 5 7 | | | FLAGS | Lab
Dat
Tim | A - SLOP | 7 E S | | | 0.10 | 510 | MDL | Laboratory Sample ID: Date Received: Time Received: | OP. | TRESUL | | | 0.10 | 5800 | R | ID: 248531-18
: 09/07/2006
: 10:00 | | T S | | | <u> </u> | 2.000 | DILUTION | | | And the second s | | | % > | ug/Kg
" | STINU | | ATTN: | Date:C | | | 188899 | 189016 | BATCH | | David Brewer | Date:09/13/2006 | | | 09/09/06 1953 | 09/11/06 1634 | DT DATE/TIME | | 3rewer | 36 | | ago | C F 6 | <u>×</u> × × × × | TECH | | | | Data File: 09110614_018.d Report Date: 13-Sep-2006 05:14 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\09110614 018.d Lab Smp Id: 248531-18 Client Smp ID: SB1185- $\overline{5}$ Inj Date : 11-SEP-2006 16:34 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-018H Misc Info : 248531-18 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 100.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------------------------|----------------|---|-----| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted % Moisture Local Compound Variable | (g) | | | | | | | | CONCENTRATIONS | | | |----|--|--------|---------|---------|----------|----------------|---------|--| | | | | | | | ON-COLUMN | FINAL | | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | == | ###################################### | ===# | | ======= | | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.935 | 12.948 | -0.013 | 15234 | 18.5502 | 21.371 | | | S | 5 GRO | 7.569- | -22.338 | | 2242241 | 314.091 | 36186 | | | ć. | C 4 Drawaflwarahansana | 20 400 | 20 602 | 0.014 | 14700 | 10.0000 | 22 021 | | (b) (6) STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | 8015B MGRO TPH - Gasoline Range Organics (GRO)
Gasoline Range Organics (GRO), Solid* | Method % Solids Determination % Solids, Solid % Moisture, Solid | TEST METHOD PARAMETER/TEST DESCRIPTION | CUSTOMER: SCS: Engineers; Inc. CUSTOMER: SCS: Engineers; Inc. Customer Sample ID: SB1195-3 Date Sampled: 09/06/2006 Time Sampled: 14:05 Sample Matrix: Soil | |-----------------------------|---|---|--|--| | 70 | 310 | 78.8
21.2 | SAMPLE RESULT | ABORATORY PROJECT: GSA | | Page 8 | | | Q FLAGS | | | | 6.9 | 0.10
0.10 | MDL | RESU
atory Sample
Received | | | 63 | 0.10
0.10 | RL | L T S ID: 248531-19: 09/07/2006: 10:00 | | | 1.00000 | | DILUTION | | | | и9/К9 | % % | UNITS | Date:09 | | | 188924 | 188899
188899 | BATCH [| Date:09/13/2006
ATTN: David Brewer | | | 09/11/06 0228 wre | 09/09/06 1956
09/09/06 1956 | DT DATE/TIME | exer | | igo | ¥re | q15
q15 | TECH | | Data File: 091006a14 026.d Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 026.d Lab Smp Id: 248531-19 Client Smp ID: SB1195-3 Inj Date : 11-SEP-2006 02:28 Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-019S Misc Info: 248531-19 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 16:01 Cal File: 091006a14 008.d Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| |
DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | CONC | ENTR | OTTA | VS. | |------|------|------|-----| | | | | | | | ON-COLUMN | FINAL | |---------|--------------------------|--------|---------|--------|----------|-----------|---------| | Cor | npounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | 20 20 2 | | | | | | **===== | **** | | \$ | 2 a,a,a-Trifluorotoluene | 12.947 | 12.940 | 0.007 | 13594 | 16.8474 | 21.380 | | S | 3 GRO | 7.504 | -22.318 | | 1844774 | 244.151 | 309.84 | | \$ | 4 4-Bromofluorobenzene | 20.500 | 20.488 | 0.012 | 11864 | 16.4581 | 20.886 | STL Chicago is part of Severn Trent Laboratories, Inc. | | | | | , egg-1, 1 | | T | | |-----------------------------|-------------------|---|--|----------------------------|--|-------------------------------|--------------------| | | | Method | 8015B MGRO | TEST METHOD | Customer
Date Sam
Time Sam
Sample M | CUSTOMER: SCS | | | * In Description = Dry Wgt. | % Moisture, Solid | % Solids Determination
% Solids, Solid | TPH - Gasoline Range Organics (GRO)
Gasoline Range Organics (GRO), High/Med L*vel | PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1195-4
Date Sampled: 09/06/2006
Time Sampled: 14:25
Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | | • | 18.5 | 81.1 | 82000 | SAMPLE RESULT | | PROJECT: | ABORATORY | | Page 9 | | | | Q FLAGS | Lab
Dat
Tîm | : GSA - SLOP | TES | | | | 0.10 | 1100 | MDL | Laboratory Sample ID:
Date Received:
Time Received: | OP | T RESUL | | | | 0.10 | 12000 | RL | 0: 248531-20
.: 09/07/2006
.: 10:00 | | T S | | | | | 4.000 | NOTINTE | | | | | | | : >4 | ug/Kg | STINU | | ATTN: | Date:0 | | | 188899 | 188899 | 189016 | ватсн г | | David Brewer | Date:09/13/2006 | | | | 09/09/06 1959 | 09/11/06 1709 wre | DATE/TIME | | емег | | | ago | C C C | 59 clb |)9 wre | TECH | | | | Data File: \\CHI-MS1\chem\govoa\inst13-14.i\091106a.b\09110614_019.d Report Date: 13-Sep-2006 05:14 ## STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\\091106a.b\\09110614\ 019.d Lab Smp Id: 248531-20 Client Smp ID: SB1195- $\overline{4}$ Inj Date : 11-SEP-2006 17:09 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-020H Misc Info : 248531-20 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 200.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------|-------|--|-----| | DF
Uf
Ws | 5.000 | Dilution Factor Correction factor Weigth of sample extracted | (a) | | M
Cpnd Variable | | % Moisture
Local Compound Variable | (3) | | CONCENTRA' | PIANT | |------------|-------| | | | | | | | ON-COLUMN | FINAL | |----------|--------------------------|--------|--------|--------|----------|-----------|---------| | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | IP III I | | | *** | | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.937 | 12.948 | -0.011 | 15494 | 18.8668 | 23.264 | | S | 5 GRO | 7.569 | 22.338 | | 2382016 | 333.670 | 82286 | | \$ | 9 4-Bromofluorobenzene | 20.489 | 20.502 | -0.013 | 14041 | 19.0862 | 23.534 | (b) (6) STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | 8015B MGRO TPH - Gasoline Range Organics (GRO), Gasoline Range Organics (GRO), Solid* | Method % Solids Determination % Solids, Solid % Moisture, Solid | TEST METHOD PARAMETER/TEST DESCRIPTION | Job Number: 248531 CUSTONER: SCS Engineers, Inc. Customer Sample ID: SB1215-3 Date Sampled: 09/06/2006 Time Sampled: 15:10 Sample Matrix: Soil | |-----------------------------|---|---|--|---| | | | | <u>Q</u> | LA | | | D | 80.1
19.9 | SAMPLE RESULT | B O R A T O R | | Page 10 | C | | Q FLAGS | GSA T | | | 6.7 | 0.10
0.10 | . | EST RESULT: SLOP Laboratory Sample ID: Date Received: Time Received: | | | 62 | 0.10
0.10 | RL | s
: 248531-21
: 09/07/2006
: 10:00 | | | 1.00000 | <u>د. د.</u> | DILUTION | | | | ug/Kg | 24 24 | SIINN | Date:(| | | 188924 | 188859
188859 | ВАТСН | Date:09/13/2006
ATTN: David Brewer | | | 09/11/06 0303 wre | 09/08/06 1259
09/08/06 1259 | DT DATE/TIME | e.e. | | STL Chicago | Æŗe | ซิซิ | TECH | | Report Date: $13-Sep-\overline{2}006$ 05:22 ## STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 027.d Lab Smp Id: 248531-21 Client Smp ID: SB1215-3 Inj Date : 11-SEP-2006 03:03 Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-021S Misc Info : 248531-21 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 16:01 Cal File: 091006a14 008.d Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | | | | | | CONCENTRA | RIONS | | | |------|---|-----------|-----------------|----------|-----------|---------|---------|---| | | | | | | ON-COLUMN | FINAL | | | | Cor | npounds | RT EX | IP RT DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | | zu : | n na sa na sa cu na na cu an cu an na ca na | ==== === | | ******* | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.948 12 | .940 0.008 | 13526 | 16.7631 | 20.928 | | | | s | 3 GRO | Compou | and Not Detecte | ed. | | | (b) (6) | , | | \$ | 4 4-Bromofluorobenzene | 20.500 20 | .488 0.012 | 10583 | 14.6810 | 18.328 | (b) (d) | | Page 1 STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | Method % Solids Determination % Solids, Solid % Moisture, Solid | 8015B MGRO TPH ~ Gasoline Range Organics (GRO), High/Med L*vel | TEST METHOD PARAMETER/TEST DESCRIPTION | ر
20
20 | L Job Number: 248531 | |-----------------------------|---|--|--|--|---------------------------------------| | q | 81.9
18.1 | 3400 | SAMPLE RESULT | | A B O R A T O R Y PROJECT: GSA | | Page 11 | | | Q FLAGS | £.: | I E S T | | | 0.10
0.10 | 270 | MDL | atory Sample
Received
Received | OP RESUL | | | 0.10
0.10 | 3100 | RL | ID: 248531-22
: 09/07/2006
: 10:00 | T 8 | | | | 1.0000 | DILUTION | | | | | % % | ug/Kg | SIIND | | Date:0 | | | 188859
188859 | 189016 | BATCH | | Date:09/13/2006
ATTN: David Brewer | | | 09/08/06 1301
09/08/06 1301 | 09/11/06 1744 wre | DI DATE/TIME | | ewer | | cago | ច ិច | wre | TECH | | | Page 2 Data File: \\CHI~MS1\chem\gcvoa\inst13-14.i\091106a.b\09110614_020.d Data File: 09110614_020.d Report Date: 13-Sep-2006 05:14 #### STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\\091106a.b\\09110614 020.d Lab Smp Id: 248531-22 Client Smp ID: SB1225-2 Inj Date : 11-SEP-2006 17:44 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-022H Misc Info : 248531-22 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 50.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------|--------|---------------------------------------|-----| | DF
Uf | | Dilution Factor
Correction factor | | | Ws | | Weigth of sample extracted | (g) | | M
Cpnd Variable | 18.100 | % Moisture
Local Compound Variable | | | | | | | | | CONCENTRA | ATIONS | |-----|--------------------------|--------|---------|--------|----------|-----------|---------| | | | | | | | ON-COLUMN | FINAL | | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | , , | *== | ======= | === | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.934 | 12.948 | -0.014 | 15311 | 18.6440 | 22.764 | | S | 5 GRO | 7.569 | -22.338 | | 403124 | 56.4692 | 3447.4 | | \$ | 9 4-Bromofluorobenzene | 20.490 | 20.502 | -0.012 | 13461 | 18.2978 | 22.342 | (b) (6) STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | Method % Solids Determination % Solids, Solid % Solids, Solid % Moisture, Solid % Moisture, Solid % Moisture, Solid Gasoline Range Organics (GRO), Solid* | TEST METHOD PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1225-4 Date Sampled: 09/06/2006 Time Sampled: 16:40 Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | |-----------------------------
---|--|---|-------------------------------|--------------------| | Page 12 | 77.9 22.1 | SAMPLE RESULT Q FLAGS | | PROJECT: GSA - | LABORATORY T | | | 0.10
0.10
6.9 | NDL. | Laboratory Sample ID:
Date Received:
Time Received: | SLOP | EST RESUL | | | 0.10
0.10
64 | 2 | ID: 248531-23
: 09/07/2006
: 10:00 | | σ
σ | | | 1.00000 | NOTTUTE | | | | | | ug/Kg | STINU | | ATTN: | Date:0 | | | 188859
188859
188924 | BATCH | | David Brewer | Date:09/13/2006 | | 300 | 09/08/06 1303 lp
09/08/06 1303 lp
09/11/06 0338 wre | DI DATE/TIME TE | | wer | | | igo | ő Ü | TECH | | | | Data File: 091006a14_028.d Report Date: 13-Sep-2006 05:22 ## STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14_028.d Lab Smp Id: 248531-23 Client Smp ID: SB1225-4 Inj Date : 11-SEP-2006 03:38 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-023S Misc Info : 248531-23 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | | | | CONCENTRATIONS | | | | | | |-----|--------------------------|--------|----------------|--------|----------|-----------|---------|----------| | | | | | | | ON-COLUMN | FINAL | | | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | === | | ==== | | | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.943 | 12.940 | 0.003 | 14566 | 18.0520 | 23.173 | (1) (0) | | s | 3 GRO | 7.504 | -22.318 | | 4138977 | 547.783 | 703.19 | (b) (6) | | \$ | 4 4-Bromofluorobenzene | 20.498 | 20.488 | 0.010 | 14953 | 20.7432 | 26.628 | | STL Chicago is part of Severn Trent Laboratories, Inc. | | ~ | | Ω | | |-----------------------------|--|----------------------------|---|--------------------| | | Method
8015B MGRO | TEST METHOD | USTOMER: SCS Engineer Customer Sample Date Sampled Time Sampled Sample Matrix | | | * In Description = Dry Wgt. | % Solids Determination % Solids, Solid % Moisture, Solid % Moisture, Solid TPH - Gasoline Range Organics (GRO) Gasoline Range Organics (GRO), Solid* | PARAMETER/TEST DESCRIPTION | CUSTOMER: SCS Engineers, Inc. Customer Sample ID: SB1135-5 Date Sampled: 09/05/2006 Time Sampled: 17:30 Sample Matrix: Soil | Job Number: 248531 | | | ₹
1 | SAMPLE | | LAB | | | 79.8
20.2 | PLE RESULT | PROJECT: GSA | ORATOR | | Page 13 | С | Q FLAGS | 1 200 | - | | \$ | | š | SLOP
Laborat
Date Re
Time Re | EST | | | 0.10
0.10
6.8 | MDL | SLOP Laboratory Sample ID: Date Received: Time Received: | RESUL | | | 0.10
0.10
63 | R. | ID: 248531-26
: 09/07/2006
: 10:00 | S | | | 1.00000 | NOITUIG | | | | | % % w | STINU | MITA | Date:0 | | | 188859
188859
188924 | BATCH | David Brewer | Date:09/13/2006 | | | | DT | Згене | 8 | | | 09/08/06 1308 lp
09/08/06 1308 lp
09/11/06 0413 wre | DATE/TIME | 3 | | | ago | 13 08 (p | TECH | | | | | ro | ⊊ | | 1 | Report Date: $13-Sep-\overline{2}006$ 05:22 ## STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 029.d Lab Smp Id: 248531-26 Client Smp ID: SB1135-5 Inj Date : 11-SEP-2006 04:13 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : 248531-026S Misc Info : 248531-26 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------------|----------------|--| | DF
Uf
Ws
M | 5.000
5.000 | Dilution Factor
Correction factor
Weigth of sample extracted (g)
% Moisture | | Cpnd Variable | | Local Compound Variable | | CONC | ENTRA | ATI | ONS | |------|-------|-----|-----| | | | | | CONCENTIA | ALIONO | |---------|---|---------------|---|-----------|---------| | | | | | ON-COLUMN | FINAL | | Co | ompounds | RT EXP RT | DLT RT RESPONSE | (ug/L) | (ug/Kg) | | 122: 13 | *************************************** | | ======================================= | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.947 12.940 | 0.007 12240 | 15.1693 | 19.009 | | S | 3 GRO | Compound No | t Detected. | | | | \$ | 4 4-Bromofluorobenzene | 20.500 20.488 | 0.012 9729 | 13.4963 | 16.913 | STL Chicago is part of Severn Trent Laboratories, Inc. | * In Description = Dry Wgt. | 8015B MGRO TPH - Gasoline Range Organics (GRO)
 Gasoline Range Organics (GRO), Solid* | Method % Solids Determination % Solids, Solid % Moisture, Solid | TEST METHOD PARAMETER/TEST DESCRIPTION | Customer Sample ID: SB1145-3 Date Sampled: 09/05/2006 Time Sampled: 18:00 Sample Matrix: Soil | CUSTOMER: SCS Engineers, Inc. | Job Number: 248531 | |-----------------------------|---|---|--|---|-------------------------------|--------------------| | Page 14 | ND C | 78.4
21.6 | SAMPLE RESULT Q FLAGS | | PROJECT: GSA | LABORATORY TE | | | 6.9 | 0.10
0.10 | S | Laboratory Sample ID: Date Received: Time Received: | SLOP | EST RESULT | | | 64 | 0.10 | 7 | : 248531-27
: 09/07/2006
: 10:00 | | S | | | 1.00000 | | DILUTION | | | | | | ug/Kg | 34 34 | STIND | | ATTN: | Date: | | arrivation (Application) | 188924 | 188859
188859 | BATCH | • | David Brewer | Date:09/13/2006 | | STI Chiana | 09/11/06 0448 wre | 09/08/06 1310 Lp | DI DATE/TIME TI | | CHCT | 5 | | STL Chicago |
ர் | <u> </u> | TECH | | | | Report Date: $13-Sep-\overline{2}006$ 05:22 ## STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 030.d Lab Smp Id: 248531-23 Client Smp ID: SB1225-4 Inj Date : 11-SEP-2006 04:48 Operator : estesw Inst ID: inst13-14.i : 248531-023S Smp Info Misc Info: 248531-23 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 16:01 Cal File: 091006a14 008.d Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | | CONCENTRATIONS | | | | | | | |-----------------------------|----------------|--------|--------------------------------|----------|-----------|---------|----------| | | | | | | ON-COLUMN | FINAL | | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | | === | | MA NEW TOO DEC STAT ON PAR AND | | | | | | \$ 2 a,a,a-Trifluorotoluene | 12.944 | 12.940 | 0.004 | 12625 | 15.6465 | 20.085 | | | | | | | | | | (1) (0) | S 3 GRO Compound Not Detected. 4 4-Bromofluorobenzene 20.500 20.488 0.012 9894 13.7252 17.619 # STANDARDS DATA ## STL Chicago #### INITIAL CALIBRATION DATA Start Cal Date : 10-SEP-2006 13:06 End Cal Date : 10-SEP-2006 16:01 Quant Method : ESTD Origin : Disabled Origin : Disabled Target Version : 4.14 Integrator : HP Genie Method file : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Last Edit : 13-Sep-2006 05:22 inst13-14.i Curve Type : Average #### Calibration File Names: | | TOIL LITE MARIED. | | |---------|---|-------------------| | | \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.k | | | Level 6 | \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.k | o\091006a14_008.d | | | · · · · · · · · · · · · · · · · · · · | 2.500 | 5.000 l | 10.000 1 | 20,000 | 30.000 | 50,000 | | | 1 | |-----|---------------------------------------|----------------------|-----------|----------|---------|---------|---------|-------|---|-----| | 1 | Compound | 2.500
 Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | RRF |
 % RSD | 1 | | 1 | Compositio | reset t | never 4 | ' | | | Peaer 0 | 1 | i
I | 1 | | 1== | | :[========[| ========= | | | | | | NOT THE REE AND CON CO. MILE AND THE TEST TOO | | | 1 | 1 2-methylpentane | +++++ | +++++ | ++++ | +++++ | ++++ | ++++ | ++++ | +++++ | < " | | S | 3 GRO | 7756 | 7535 | 7514 | 7503 | 7581 | 7446 | 7556 |
1.419 | ٠ | | 1 | 5 1,2,4-trimethylbenzene | +++++ | +++++ | ++++ | +++++ | +++++ | ++++ | +++++ | +++++ | < | | == | | | | | | ***** | | | | : | | \$ | 2 a,a,a-Trifluorotoluene | 851 | 799 | 795 | 798 | 801 | 797 | 807 | 2.702 | | | \$ | 4 4-Bromofluorobenzene | 765 | 697 | 695 | 717 | 722 | 730 | 721 | 3.556 | 1 | | 1 | | | 1 | | | | | | | .1 | Data File: 091006a14_003.d Report Date: 13-Sep-2006 04:58 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14_003.d Lab Smp Id: ic50 Client Smp ID: ic50 Inj Date : 10-SEP-2006 13:06 Operator : estesw Inst ID: inst13-14.i Smp Info : ic50 Misc Info : ic50 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 16:01 Cal File: 091006a14_008.d Als bottle: 1 Calibration Sample, Level: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------|---------|--| | | | the wife took the side was took too took too took took took took | | DF | 1.000 | Dilution Factor | | Uf | 5.000 | Correction factor | | Ws | 5.000 | Weigth of sample extracted (g) | | M | 0.00000 | % Moisture | | Cpnd Variable | | Local Compound Variable | AMOUNTS | | | | | | | CAL-AMT | ON-COL | |---------|--|---------------------|---------|--------|----------|---------|----------| | Cor | npounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | 22 EU S | 22 224 227 237 237 237 237 237 237 237 237 237 | 100 100 100 100 100 | | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.944 | 12.940 | 0.004 | 2128 | 2.50000 | 2.637(a) | | S | 3 GRO | 7.504 | -22.318 | | 387784 | 50.0000 | 51.322 | | \$ | 4 4-Bromofluorobenzene | 20.494 | 20.488 | 0.006 | 1912 | 2.50000 | 2.652(a) | (b) (6) ## QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). Data File: \\CHI-MS1\chem\gcvoa\inst13-14,i\091006icalgros.b\091006a14_004.d Data File: 091006a14_004.d Report Date: 13-Sep-2006 04:58 ## STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14_004.d Lab Smp Id: ic100 Client Smp ID: ic100 Inj Date : 10-SEP-2006 13:41 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : ic100 Misc Info : ic100 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------------------------|----------------|---|-----| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted % Moisture Local Compound Variable | (g) | | * * * * C T T * * FT C | ٧. | |------------------------|----| | AMOUNTS | > | | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | CAL-AMT | ON-COL
(ug/L) | |-----|--------------------------|--------|---------|--------|----------|---------|-------------------| | === | | ==== | | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.942 | 12.940 | 0.002 | 3993 | 5.00000 | 4.949(a) | | S | 3 GRO | 7.504 | -22.318 | | 753476 | 100.000 | 99.721 | | \$ | 4 4-Bromofluorobenzene | 20.491 | 20.488 | 0.003 | 3486 | 5.00000 | 4.836(a) | ## QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). Data File: 091006a14_005.d Report Date: 13-Sep-2006 04:58 ## STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14_005.d Lab Smp Id: ic200 Client Smp ID: ic200 Inj Date : 10-SEP-2006 14:16 Operator : estesw Inst ID: inst13-14.i Smp Info : ic200 Misc Info : ic200 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|---------|----------------------------|-----| | | | | | | DF | 1.000 | Dilution Factor | | | U£ | 5.000 | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | | | | | | | CAL-AMT | ON-COL | |-------|---|--------|---------|--------|----------|---------|---------| | Com | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | m m m | 眼 眼 跳 房 原 原 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医 医 | ==== | | | | **** | | | \$ | 2 a,a,a-Trifluorotoluene | 12.940 | 12.940 | 0.000 | 7951 | 10.0000 | 9.854 | | S | 3 GRO | 7.504 | -22.318 | | 1502866 | 200.000 | 198.90 | | \$ | 4 4-Bromofluorobenzene | 20.488 | 20.488 | 0.000 | 6945 | 10.0000 | 9.634 | (b) (6) Compound Sublist: GRO.sub AMOUNTS 100 11 Date : 10-SEP-2006 14:51 Data File: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14_006.d Data File: 091006a14_006.d Report Date: 13-Sep-2006 04:58 ## STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14 006.d Lab Smp Id: ic400 Client Smp ID: ic400 Inj Date : 10-SEP-2006 14:51 Operator : estesw Inst ID: inst13-14.i Smp Info : ic400 Misc Info : ic400 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 14:16 Cal File: 091006a14 005.d Als bottle: 1 Calibration Sample, Level: 4 Dil Factor: 1.00000 Integrator: HP Genie Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------------------------|----------------|---|-----| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted % Moisture Local Compound Variable | (g) | | | | | | | | AMOUN | TS | |--------|--------------------------|--------|---------|--------|----------|---------|---------| | | | | | | | CAL-AMT | ON-COL | | Cor | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | ₩ == 1 | ************* | ==== | ====== | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.941 | 12.940 | 0.001 | 15964 | 20.0000 | 19.784 | | S | 3 GRO | 7.504 | -22.318 | | 3001214 | 400.000 | 397.20 | | \$ | 4 4-Bromofluorobenzene | 20,487 | 20.488 | -0.001 | 14340 | 20.0000 | 19.893 | (b) (6) Compound Sublist: GRO.sub Data File: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14_007.d Report Date: 13-Sep-2006 04:58 ## STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14 007.d Lab Smp Id: ic600 Client Smp ID: ic600 Inj Date : 10-SEP-2006 15:26 Inst ID: inst13-14.i Operator : estesw Smp Info : ic600 Misc Info : ic600 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 14:51 Cal File: 091006a14 006.d Als bottle: 1 Calibration Sample, Level: 5 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | AMOUN | TC | |-------|-----| | AMOUN | 1.5 | | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | CAL-AMT | ON-COL
(ug/L) | |----------|--------------------------|--------|---------|--------|--------------------------------|--------------------------|-------------------| | 100 EX = | | | | | 200 Str 700 CO Str 500 Str 501 | EUC D'A DRE SM ED SIG DO | | | \$ | 2 a,a,a-Trifluorotoluene | 12.938 | 12.940 | -0.002 | 24038 | 30.0000 | 29.791 | | s | 3 GRO | 7.504 | -22.318 | | 4548534 | 600.000 | 601.99 | | \$ | 4 4-Bromofluorobenzene | 20.485 | 20.488 | -0.003 | 21649 | 30.0000 | 30.032 | y age Instrument: inst13-14.i Date : 10-SEP-2006 16:01 Client ID: ic1000 Data File: \\CHI-MS1\chem\govoa\inst13-14.i\091006icalgros.b\091006a14_008.d Data File: 091006a14_008.d Report Date: 13-Sep-2006 04:58 ## STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14 008.d Lab Smp Id: ic1000 Client Smp ID: ic1000 Inj Date : 10-SEP-2006 16:01 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : ic1000 Misc Info : ic1000 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|---------|---|-----| | | | man were stand under made and the total stand and the total stand and total stand and total stand and total and | | | DF | 1.000 | Dilution Factor | | | Uf | 5.000 | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M |
0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | Α | MO | ŲN | $_{ m TS}$ | |---|----|----|------------| | Con | mpounds | RT | EXP RT | DLT RT | RESPONSE | CAL-AMT
(ug/L) | ON-COL
(ug/L) | |--------|--------------------------|--------|---------|--------|----------|--------------------|-------------------| | 22 W 2 | | | | ****** | NU | **** | | | \$ | 2 a,a,a-Trifluorotoluene | 12.934 | 12.940 | -0.006 | 39849 | 50.0000 | 49.386 | | S | 3 GRO | 7.504 | -22.318 | | 7446487 | 1000.00 | 985.52 | | \$ | 4 4-Bromofluorobenzene | 20.484 | 20.488 | -0.004 | 36502 | 50.0000 | 50.636 | (b) (6) ## STL Chicago #### INITIAL CALIBRATION DATA Start Cal Date : 11-SEP-2006 07:51 End Cal Date : 11-SEP-2006 10:45 Quant Method : ESTD : Disabled Origin Target Version : 4.14 : HP Genie Integrator Method file : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m : 13-Sep-2006 05:14 inst13-14.i Last Edit Curve Type : Average ## Calibration File Names: | | ~- ~ ~ | | |------|--------|--| | | | \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614 003.d | | | | \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614\004.d | | Leve | l 3: | \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614\005.d | | Leve | 1 4: | \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614\006.d | | Leve | 15: | \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614 007.d | | Leve | l 6: | \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614\(^{008.d}\) | | | | 5.000 | 10.000 | 20.000 | 40.000 | 60.000 | 100.000 | | | |------------------------|---------------------------|---------|---------|---------|---------|---------|----------|-------|---| | } | Compound | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | RRF | % RSD | | == | | | | | ======= | | ======== | | ED. SEN CHE ESE NOS LOS THE USC ETE TOA | | NAME OF TAXABLE PARTY. | 1 2-methylpentane | +++++ | ++++ | ++++ | +++++ | ++++ | ++++ | ++++ | +++++ [<- | | s | 5 GRO | 7300 | 7193 | 7197 | 7170 | 7137 | 6836 | 7139 | 2.215 | | 1 | 12 1,2,4-trimethylbenzene | +++++ | ++++ | ++++ | +++++ | +++++ | +++++ | +++++ | +++++ | | - | | | | ****** | | **** | **** | | | | \$ | 3 a,a,a-Trifluorotoluene | 865 | 830 | 812 | 819 | 807 | 794 | 821 | 2.988 | | \$ | 9 4-Bromofluorobenzene | 808 | 731 | 713 | 724 | 720 | 717 | 736 | 4.892 | | | | | | | | | | | | Data File: 09110614 003.d Report Date: 13-Sep-2006 05:03 ## STL Chicago Data file: \CHI-MS1\chem\qcvoa\inst13-14.i\091106icalqrom.b\09110614 003.d Lab Smp Id: ic50 Client Smp ID: ic50 Inj Date : 11-SEP-2006 07:51 Inst ID: inst13-14.i Operator : estesw : ic50 Smp Info Misc Info : ic50 Comment : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Method Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Cal Date : 11-SEP-2006 10:45 Cal File: 09110614 008.d Als bottle: 1 Calibration Sample, Level: 1 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------------|----------------|---| | DF
Uf
Ws
M | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture | | Cpnd Variable | 0.0000 | Local Compound Variable | | | | | AMOUNTS | | | | | | |----|--------------------------|-------------------|---------|--------|----------|---------|----------|--| | | | | | | | CAL-AMT | ON-COL | | | Co | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | | == | | 100 to 100 to 100 | ***** | **** | | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.953 | 12.948 | 0.005 | 2162 | 2.50000 | 2.633(a) | | | S | 5 GRO | 7.569- | 22.338 | | 364986 | 50.0000 | 51.127 | | | \$ | 9 4-Bromofluorobenzene | 20.508 | 20.502 | 0.006 | 2020 | 2.50000 | 2.746(a) | | #### QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation (BLOQ). 84 Page 2 Data File: \\CHI-MS1\chem\govoa\inst13-14,i\091106icalgrom.b\09110614_004.d Data File: 09110614_004.d Report Date: 13-Sep-2006 05:03 # STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614_004.d Lab Smp Id: ic100 Client Smp ID: ic100 Inj Date : 11-SEP-2006 08:26 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : ic100 Misc Info : ic100 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Cal Date: 11-SEP-2006 07:51 Cal File: 09110614_003.d Als bottle: 1 Calibration Sample, Level: 2 Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|---------|--|-----| | | | ARREST AR | | | DF | 1.000 | Dilution Factor | | | Uf | | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | | | | | | AMOUN | TS | |----|--------------------------|-----------|-------------|----------|---------|---| | | | | | | CAL-AMT | ON-COL | | Co | pounds | RT E | XP RT DLT R | RESPONSE | (ug/L) | (ug/L) | | == | ******** | **** | | | | NOTE 1984, 2001, 2004, 3400, 0000, 0000 | | \$ | 3 a,a,a-Trifluorotoluene | 12.951 12 | 2.948 0.003 | 4152 | 5.00000 | 5.056 | | S | 5 GRO | 7.569-22 | .338 | 719256 | 100.000 | 1.00.75 (b) (6) | | \$ | 9 4-Bromofluorobenzene | 20.505 20 | 0.502 0.003 | 3657 | 5.00000 | 4.971(a) | ## QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). 1 Date : 11-SEP-2006 09:01 Data File: \\CHI-MS1\chem\govoa\inst13-14.i\091106icalgrom.b\09110614_005.d Report Date: 13-Sep-2006 05:03 # STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614 005.d Lab Smp Id: ic200 Client Smp ID: ic200 Inj Date : 11-SEP-2006 09:01 Smp Info : ic200 Misc Info : ic200 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Cal Date : 11-SEP-2006 08:26 Cal File: 09110614_004.d Als bottle: 1 Calibration Sample, Level: 3 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------------|----------------|--| | DF
Uf
Ws
M | 5.000
5.000 | Dilution Factor
Correction factor
Weigth of sample extracted (g)
% Moisture | | Cpnd Variable | | Local Compound Variable | AMOUNTS | | | | | | | CAL-AMT | ON-COL | |----------|--------------------------|--------|--------|--------|----------|---------|---------| | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | SE 20 20 | | **** | ***** | | **==*** | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.948 | 12.948 | 0.000 | 8118 | 10.0000 | 9.885 | | S | 5 GRO | 7.569 | 22.338 | | 1439498 | 200.000 | 201.64 | | \$ | 9 4-Bromofluorobenzene | 20.501 | 20.502 | -0.001 | 7129 | 10.0000 | 9.691 | Page 2 Instrument; inst13-14,i Client ID; ic400 Date : 11-SEP-2006 09:36 Data File: \\CHI~MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614_006.d Data File: 09110614_006.d Report Date: 13-Sep-2006 05:03 # STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614_006.d Lab Smp Id: ic400 Client Smp ID: ic400 Inj Date : 11-SEP-2006 09:36 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : ic400
Misc Info : ic400 Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------------|----------------|---| | DF
Uf
Ws
M | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture | | M
Cpnd Variable | 0.00000 | <pre>% Moisture Local Compound Variable</pre> | | AMOUNTS | , | |----------|---| | APICUNIC | , | | | | | | | CAL-AMT | ON-COL | |--|--------|---------|--------|----------|---------|---------| | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | NOT THE THE THE THE THE THE THE THE THE TH | m=m= | | | | | | | \$ 3 a,a,a-Trifluorotoluene | 12.946 | 12.948 | -0.002 | 16388 | 20.0000 | 19.955 | | S 5 GRO | 7.569 | -22.338 | | 2868091 | 400.000 | 401.76 | | \$ 94-Bromofluorobenzene | 20.500 | 20.502 | -0.002 | 14483 | 20.0000 | 19.687 | | | | | | | | | Data File: 09110614 007.d Report Date: 13-Sep-2006 05:03 # STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614 007.d Lab Smp Id: ic600 Client Smp ID: ic600 Inj Date : 11-SEP-2006 10:11 Operator : estesw Inst ID: inst13-14.i : ic600 Smp Info Misc Info : ic600 Comment : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Method Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Cal Date : 11-SEP-2006 09:36 Cal File: 09110614 006.d Als bottle: 1 Calibration Sample, Level: 5 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|---------------------------------------|--|-----| | | ··· ··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· | مين فين يمن فين يمن يمن يمن فين يمن يمن بين بين بين بين بين بين بين بين بين بي | | | DF | 1.000 | Dilution Factor | | | U£ | 5.000 | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | _ | | Cpnd Variable | | Local Compound Variable | | | AMOUNTS | | |----------|--| | MINOUNTO | | | | | | | | | CAL-AMT | ON-COL | |----------|--|--------|---------|--------|----------|---------|---------| | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | == == == | and and also have have not also have have have have have also have also have also have also have | | | | ****** | ***** | | | \$ | 3 a,a,a-Trifluorotoluene | 12.946 | 12.948 | -0.002 | 24198 | 30.0000 | 29.466 | | S | 5 GRO | 7.569 | -22.338 | | 4282317 | 600.000 | 599.86 | | \$ | 9 4-Bromofluorobenzene | 20.500 | 20.502 | -0.002 | 21601 | 30.0000 | 29.363 | Instrument: inst13-14.i Date : 11-SEP-2006 10:45 Client ID: ic1000 Data File: \\CHI-HS1\chem\govoa\inst13-14.i\091106icalgrom.b\09110614_008.d Data File: 09110614_008.d Page 1 Report Date: 13-Sep-2006 05:03 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614 008.d Lab Smp Id: ic1000 Client Smp ID: ic1000 Inj Date : 11-SEP-2006 10:45 Operator : estesw Inst ID: inst13-14.i Smp Info : ic1000 Misc Info : ic1000 Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Cal Date: 11-SEP-2006 10:11 Cal File: 09110614 007.d Als bottle: 1 Calibration Sample, Level: 6 Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|---------|-----------------------------------|-----| | DF
Uf | | Dilution Factor Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | AMO | TIC | NTS | |-----|-----|-----| | | | | | | | CAL-AMT | ON-COL | |-------|--------------------------|--------|---------|--------|----------|---------|---------| | Comp | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | ===== | ***** | ==== | | | *** | ======= | | | \$ | 3 a,a,a-Trifluorotoluene | 12.946 | 12.948 | -0.002 | 39719 | 50.0000 | 48.365 | | S | 5 GRO | 7.569 | -22.338 | | 6835811 | 1000.00 | 957.55 | | \$ | 9 4-Bromofluorobenzene | 20.500 | 20.502 | -0.002 | 35874 | 50.0000 | 48.764 | Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago ## CONTINUING CALIBRATION COMPOUNDS 16:01 Instrument ID: inst13-14.i Injection Date: 10-SEP-2006 17:11 Lab File ID: 091006a14_010.d Init. Cal. Date(s): 10-SEP-2006 10-SEP-2006 Analysis Type: SOIL Init. Cal. Times: 13:06 Lab Sample ID: ccv Quant Type: ESTD Method: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m | | | | | | MIN | | | XAM | | |---|---------------------------------------|-------|--------|------|--------|------|---------|-------------|------------| | | COMPOUND | RRF / | AMOUNT | RF20 | RRF | %D / | %DRIFT | %D / %DRIFT | CURVE TYPE | | : | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | *** | | | ==== | ==== | | | | | : | 2 a,a,a-Trifluorotoluene | | 807 | 787 | (0.010 | - | 2.52712 | 15.00000 | Averaged | | 7 | 3 GRO | | 7556 | 7437 | 0.010 | - | 1.56890 | 15.00000 | Averaged | | 1 | 4 4-Bromofluorobenzene | | 721 | 709 | 0.010 | - | 1.68718 | 15.00000 | Averaged | | 1 | | | | | | } | | | l | Data File: 091006a14_010.d Report Date: 13-Sep-2006 05:22 # STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 010.d Lab Smp Id: ccv Client Smp ID: ccv Inj Date : 10-SEP-2006 17:11 Operator : estesw Inst ID: inst13-14.i Smp Info : ccv Misc Info : ccv Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date: 10-SEP-2006 16:01 Cal File: 091006a14 008.d Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|---------|----------------------------|-----| | | | | | | DF | 1.000 | Dilution Factor | | | Uf | 5.000 | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | AMOUNT | 0 | |--------|---| | AMOUNT | 5 | | Con | npounds | RT | EXP RT | DLT RT | RESPONSE | CAL-AMT | ON-COL
(ug/L) | |------|--------------------------|---------|---------|--------|----------|---------|-------------------| | ==== | | w = = = | | ====== | | ======= | ***** | | \$ | 2 a,a,a-Trifluorotoluene | 12.932 | 12.940 | -0.008 | 15730 | 20.0000 | 19.494 | | s | 3 GRO | 7.504 | -22.318 | | 2974928 | 400.000 | 393.72 | | \$ | 4 4-Bromofluorobenzene | 20.484 | 20.488 | -0.004 | 14174 | 20.0000 | 19.662 | Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago ## CONTINUING CALIBRATION COMPOUNDS 16:01 Instrument ID: inst13-14.i Injection Date: 10-SEP-2006 23:34 Lab File ID: 091006a14_021.d Init. Cal. Date(s): 10-SEP-2006 10-SEP-2006 Analysis Type: SOIL Init. Cal. Times: 13:06 Lab Sample ID: ccv Quant Type: ESTD Method: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m | | | 1 | | | MIN | 1 | | | MAX | | |----|--------------------------|------|----------|------|-------|---|------------|------|-----------|---| | + | COMPOUND | RRF | / AMOUNT | RF20 | RRF | 유 | D / %DRIFT | %D / | *DRIFT | CURVE TYPE | | = | · | ==== | | | | = | | ==== | | ======================================= | | \$ | 2 a,a,a-Trifluorotoluene | | 807 | 742 | 0.010 | | -8.00494 | 1 | 5.00000 | Averaged | | 18 | 3 GRO | | 7556 | 7223 | 0.010 |) | -4.40639 | 1 | 5.00000 | Averaged | | 1 | 4 4-Bromofluorobenzene | | 721 | 673 | 0.010 | | -6.67426 | 1 | 5.00000 | Averaged | | _ | | | | | | | | | , ., ,. , | | Data File: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14_021.d Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 021.d Lab Smp Id: ccv Client Smp ID: ccv Inj Date : 10-SEP-2006 23:34 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : ccv Misc Info : ccv Comment : Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date: 10-SEP-2006 16:01 Cal File: 091006a14_008.d Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name Value | Description | |------------------|---| | Uf 5.0
Ws 5.0 | 00 Dilution Factor
00 Correction factor
00 Weigth of sample extracted (g)
00 % Moisture
Local Compound Variable | AMOUNTS | Cor | pounds | RT | EXP RT | DLT RT | RESPONSE | CAL-AMT (ug/L) | ON-COL
(ug/L) | |-----|--------------------------|--------|---------|--------|----------|-----------------|-------------------| | === | | ==== | ======= | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 12.947 | 12.940 | 0.007 | 14846 | 20.0000 | 18.399 | | S | 3 GRO | 7.504 | -22.318 | | 2889169 | 400.000 | 382.37 | | \$ | 4 4-Bromofluorobenzene | 20.498 | 20.488 | 0.010 | 13455 | 20.0000 | 18.665 | Report Date: $13-Sep-\overline{2}006$ 05:22 ## STL Chicago #### CONTINUING
CALIBRATION COMPOUNDS | | | 1 | ļ | · · · · · · · · · · · · · · · · · · · | MIN | ······································ | MAX | | |----|--------------------------|-----|----------|---------------------------------------|-------|--|-------------|------------| | (| COMPOUND | RRF | / AMOUNT | RF20 | RRF | %D / %DRIFT | %D / %DRIFT | CURVE TYPE | | ** | ************* | | | ******** | | | | | | \$ | 2 a,a,a-Trifluorotoluene | 1 | 807 | 759 | 0.010 | -5.97244 | 15.00000 | Averaged | | S | 3 GRO | | 7556 | 7208 | 0.010 | -4.60293 | 15.00000 | Averaged | | \$ | 4 4-Bromofluorobenzene | | 721 | 693 | 0.010 | -3.80964 | 15.00000 | Averaged | | | | _ | | | t1 | | | | Data File: 091006a14_031.d Report Date: 13-Sep-2006 05:22 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 031.d Lab Smp Id: ccv Client Smp ID: ccv Inj Date : 11-SEP-2006 05:23 Operator : estesw Inst ID: inst13-14.i Smp Info : ccv Misc Info : ccv Comment : Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date: 10-SEP-2006 16:01 Cal File: 091006a14 008.d Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------|-------|---------------------------------------|-----| | DF
Uf | 5.000 | Dilution Factor
Correction factor | , , | | Ws
M | | Weigth of sample extracted % Moisture | (g) | | Cpnd Variable | | Local Compound Variable | | | AMOUNTS | | |---------|--| | | | | | | | CAL-AMT | ON-COL | |------|--------------------------|---------|---------|--------|----------|---------|---------------| | Co | ompounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | ==== | ********** | W W W W | | | | | = = = = = = = | | \$ | 2 a,a,a-Trifluorotoluene | 12.941 | 12.940 | 0.001 | 15174 | 20.0000 | 18.806 | | S | 3 GRO | 7.504 | -22.318 | | 2883229 | 400.000 | 381.59 | | \$ | 4 4-Bromofluorobenzene | 20.509 | 20.488 | 0.021 | 13868 | 20.0000 | 19.238 | Data File: 09110614 010.d Report Date: 13-Sep-2006 05:14 ## STL Chicago #### CONTINUING CALIBRATION COMPOUNDS Instrument ID: inst13-14.i Injection Date: 11-SEP-2006 11:55 Lab File ID: 09110614_010.d Init. Cal. Date(s): 11-SEP-2006 11-SEP-2006 10:45 Analysis Type: SOIL Init. Cal. Times: 07:51 Quant Type: ESTD Lab Sample ID: ccv Method: \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m | | | | | | MIN [| | MAX | | |----|--------------------------|-----|----------|------|-------|-------------|-------------|------------| | (| COMPOUND | RRF | / AMOUNT | RF40 | RRF | %D / %DRIFT | %D / %DRIFT | CURVE TYPE | | | | | | | ===== | | | | | \$ | 3 a,a,a-Trifluorotoluene | 1 | 82Ì | 809 | 0.010 | -1.45270 | 15.00000 | Averaged | | s | 5 GRO | 1 | 7139 | 6978 | 0.010 | -2.25186 | 15.00000 | Averaged | | \$ | 9 4-Bromofluorobenzene | | 736 | 732 | 0.010 | -0.48399 | 15.00000 | Averaged | | 1 | | | | | l | | li | | Report Date: 13-Sep-2006 05:14 # STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\09110614_010.d Lab Smp Id: ccv Client Smp ID: ccv Inj Date : 11-SEP-2006 11:55 Smp Info : ccv Misc Info : ccv Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------------|---------|----------------------------|-----| | | | | | | DF | 1.000 | Dilution Factor | | | Uf | 5.000 | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | AMO | JNTS | |-------|---------| | TO TO | 71# T O | | Con | npounds | RT | EXP RT | DLT RT | RESPONSE | CAL-AMT | ON-COL
(ug/L) | |-------|--------------------------|-----------|---------|----------------------|-----------------|-----------------------------|-------------------| | m m 2 | | 20 W C 42 | | m == m == == m == == | m = m = w = = = | 222 222 222 222 222 222 222 | | | \$ | 3 a,a,a-Trifluorotoluene | 12.946 | 12.948 | -0.002 | 16186 | 20.0000 | 19.709 | | s | 5 GRO | 7.569 | -22.338 | | 2791231 | 400.000 | 390.99 | | \$ | 9 4-Bromofluorobenzene | 20.500 | 20.502 | -0.002 | 14642 | 20.0000 | 19.903 | 10:45 Data File: 09110614_021.d Report Date: 13-Sep-2006 05:14 # STL Chicago #### CONTINUING CALIBRATION COMPOUNDS Instrument ID: inst13-14.i Injection Date: 11-SEP-2006 18:18 Lab File ID: 09110614_021.d Init. Cal. Date(s): 11-SEP-2006 11-SEP-2006 Analysis Type: SOIL Init. Cal. Times: 07:51 Lab Sample ID: ccv Quant Type: ESTD Method: \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m | 1 | | | | | MIN | | XAM | | |------|--------------------------|-----|-------------|-----------|-------|-------------|-------------|------------| | | COMPOUND | RRF | / TRUUOMA \ | RF40 | RRF | %D / %DRIFT | %D / %DRIFT | CURVE TYPE | | ==== | | | | ********* | ===== | | | ======= | | \$ | 3 a,a,a-Trifluorotoluene | - | 821 | 765 | 0.010 | -6.90184 | 15.00000 | Averaged | | S | 5 GRO | ' | 7139 | 6796 | 0.010 | -4.80441 | 15.00000 | Averaged | | \$ | 9 4-Bromofluorobenzene | 1 | 736 | 695 | 0.010 | -5.54067 | 15.00000 | Averaged | | 1 | | | | | | | | | Data File: 09110614_021.d Report Date: 13-Sep-2006 05:14 # STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\09110614_021.d Lab Smp Id: ccv Client Smp ID: ccv Inj Date : 11-SEP-2006 18:18 Operator : estesw Inst ID: inst13-14.i Smp Info : ccv Misc Info : ccv Comment : Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 Continuing Calibration Sample Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--|---------|----------------------------|-----| | array abide word from their while while their paths thank their beauty being abide | | | | | DF | 1.000 | Dilution Factor | | | U£ | 5.000 | Correction factor | | | Ws | 5.000 | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | AMOUNT | TC! | |---------|-----| | AMOUN'I | '5 | | | | | | | | CAL-AMT | ON-COL | |-----|--------------------------|--------|---------|---------------------------------------|----------|---------|---------| | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/L) | | | | | *=== | = = = = = = = = = = = = = = = = = = = | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.936 | 12.948 | -0.012 | 15291 | 20.0000 | 18.620 | | S | 5 GRO | 7.569 | -22.338 | | 2718342 | 400.000 | 380.78 | | \$ | 9 4-Bromofluorobenzene | 20.502 | 20.502 | 0.000 | 13898 | 20.0000 | 18.892 | # QUALITY CONTROL DATA | | Job Number.: 248531 | QUAI | LITY C | ONTROLI | RESULTS | Report Date.: 09/1 | 13/2006 | |---------------|---|-------------|-----------|------------|---------------------------|--------------------|-----------------| | CUSTOMER: SC | S Engineers, Inc. | | PROJECT: | GSA - SLOP | | ATTN: | | | QC Type | Description | on | | Reag. Code | Lab ID | Dilution Factor | Date Time | | | : 8015B MGRO
iption.: TPH - Gasoline F | Range Organ | ics (GRO) | | ode: INST1314
: 188924 | 4 Analys | st: wre | | мв | Method Blank | | | | 188923-001 | | 09/10/2006 1746 | | Parame | eter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value QC Cal | lc. * Limits | | asoline Range | e Organics (GRO), Solid | ug/Kg | 5,400 | Ü | | | | Report Date: $13-Sep-\overline{2}006$ 05:22 # STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 011.d Lab Smp Id: 188923-1MB Client Smp ID: $188923-1\overline{M}B$ Inj Date : 10-SEP-2006 17:46 Operator : estesw Inst ID: inst13-14.i Smp Info : mb Misc Info : mb Comment : Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Als bottle: 1 QC Sample: BLANK Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------|---------|---|-----| | DF
Uf | | Dilution Factor
Correction factor | | | Ws | | Weigth of sample extracted | (g) | | M
Cpnd Variable | 0.00000 | <pre>% Moisture Local Compound Variable</pre> | | | | | | | | | CONCENTRA | RIONS | |-----|--------------------------|--------|------------|-----------|----------|-----------|---------| | | | | | | | ON-COLUMN | FINAL | | Cor | mpounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | ==; | | | | ======= | | ====== | | | \$ | 2 a,a,a-Trifluorotoluene | 12.936 | 12.940 | -0.004 | 14601 | 18.0954 | 18.095 | | S | 3 GRO | Cor | npound Not | : Detecte | đ. | | | | \$ | 4 4-Bromofluorobenzene | 20.485 | 20.488 | -0.003 | 12245 | 16.9866 | 16.987 | | ľ | ob Number.: 248531 | QUALITY | CONTROL | RESULTS | Report Date.: 09/1 | 3/2006 | |---------------|--|----------------------|--------------|----------------------------|--------------------|-----------------| | CUSTOMER: SCS | Engineers, Inc. | PROJECT | : GSA - SLOP | | ATTN: | | | QC Type | Description | on I | Reag. Code | Lab ID | Dilution Factor | Date Time | | | : 8015B MGRO
otion:: TPH - Gasoline F | Range
Organics (GRO) | , , | Code: INST1314
: 189016 | Analys | t: wre | | MB M | Jethod Blank | | | 189015-001 | | 09/11/2006 1230 | | Paramet | er/Test Description | Units QC Resu | lt QC Resul | t True Value | Orig. Value QC Cal | .c. * Limits | 220.000 U Gasoline Range Organics (GRO), High/Me ug/Kg Report Date: 13-Sep-2006 05:14 # STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\09110614_011.d Lab Smp Id: 189015-1MB Client Smp ID: 189015-\overline{IMB} Inj Date : 11-SEP-2006 12:30 Operator : estesw Inst ID: inst13-14.i Operator : estesw Smp Info : mb Misc Info : mb Comment : Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Meth Date: 13-Sep-2006 05:14 inst13-14. Quant Type: ESTD Als bottle: 1 QC Sample: BLANK Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---------------------|----------------|--|-----| | DF
Uf
Ws
M | 5.000
5.000 | Dilution Factor
Correction factor
Weigth of sample extracted
% Moisture | (g) | | Cpnd Variable | | Local Compound Variable | | | | | | | | CONCENTRATIONS | | | |-----|--------------------------|----------------|-----------|-----------|----------------|-----------|---------| | | | | | | | ON-COLUMN | FINAL | | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | === | | NO 102 107 107 | | | | ======= | *** | | \$ | 3 a,a,a-Trifluorotoluene | 12.945 | 12.948 | -0.003 | 15568 | 18.9569 | 18.957 | | S | 5 GRO | Co | mpound No | t Detecte | đ. | | | | \$ | 9 4-Bromofluorobenzene | 20.499 | 20.502 | -0.003 | 13211 | 17.9580 | 17.958 | Report Date: $13-Sep-\overline{2006}$ 05:22 # STL Chicago Data file: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\091006a14 012.d Lab Smp Id: 188923-2LCS Client Smp ID: 188923-2LCS Inj Date : 10-SEP-2006 18:20 Operator : estesw Smp Info : LCSG06I10DSA Inst ID: inst13-14.i Misc Info : lcs Comment Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b\gro14s.m Meth Date: 13-Sep-2006 05:22 inst13-14. Quant Type: ESTD Cal Date : 10-SEP-2006 16:01 Cal File: 091006a14 008.d Als bottle: 1 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------------------------|----------------|---|-----| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted % Moisture Local Compound Variable | (g) | | | | | | | | CONCENTRATIONS | | |-----|--------------------------|--------|---------|----------|----------|----------------|---------| | | | | | | | ON-COLUMN | FINAL | | Con | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | | ==== | | ======== | | | ======= | | \$ | 2 a,a,a-Trifluorotoluene | 12.933 | 12.940 | -0.007 | 15527 | 19.2430 | 19.243 | | C | 3 CPO | 7 504 | .22 318 | | 3009164 | 200 256 | 200 26 | 7.504-22.318 398.26 3009164 398.255 20.486 20.488 -0.002 4 4-Bromofluorobenzene 13988 19.4045 19.404 118 Page 2 Data File: \\CHI-MS1\chem\govoa\inst13-14,i\091106a,b\09110614_012,d Data File: 09110614 012.d Report Date: 13-Sep-2006 05:50 # STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\09110614 012.d Lab Smp Id: 189015-2LCS Client Smp ID: 189015-2LCS Inj Date : 11-SEP-2006 13:05 Inst ID: inst13-14.i Operator : estesw Smp Info : LCSG06I11DSA Misc Info : lcs Comment : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b\gro14m.m Method Meth Date: 13-Sep-2006 05:50 estesw Quant Type: ESTD Cal Date : 11-SEP-2006 10:45 Cal File: 09110614 008.d Als bottle: 1 QC Sample: LCS Dil Factor: 50.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |---|---------|----------------------------|-----| | water areas areas water their trade areas order to the sales and the sales areas. | | | | | DF | 50.000 | Dilution Factor | | | Uf | 5.000 | Correction factor | | | Ws | | Weigth of sample extracted | (g) | | M | 0.00000 | % Moisture | | | Cpnd Variable | | Local Compound Variable | | | | | | | | CONCENTRAT | | | | |-----------|----|--------|--------|----------|------------|-------|--|--| | | | | | | ON-COLUMN | FINA | | | | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ua/L) | (ug/E | | | | CO | npounds | KI | DVL KI | DUI KI | KIND LOMON | (ug/13) | (red) red) | |----|--------------------------|--------|---------|---|------------|----------|------------| | | | ==== | ====== | ======================================= | ======= | ======= | ====== | | \$ | 3 a,a,a-Trifluorotoluene | 12.943 | 12.948 | -0.005 | 15999 | 19.4818 | 19.482 | | S | 5 GRO | 7.569 | -22.338 | | 2882930 | 403.838 | 20192 | | \$ | 9 4-Bromofluorobenzene | 20.497 | 20.502 | -0.005 | 14162 | 19.2507 | 19.251 | Page 2 Bata File: \\CHI-MS1\chem\govoa\inst13-14.i\091106icalgrom.b\09110614_009.d Data File: 09110614_009.d Report Date: 13-Sep-2006 05:04 ### STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614_009.d Lab Smp Id: ical chk Client Smp ID: ical chk Inj Date : 11-SEP-2006 11:20 Operator : estesw Inst ID: inst13-14.i Smp Info : ical chk Misc Info : ical chk Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Meth Date: 13-Sep-2006 05:03 inst13-14. Quant Type: ESTD Als bottle: 1 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------------|---------|---| | | | THE | | DF | | Dilution Factor | | Uf | 5.000 | Correction factor | | Ws | 5.000 | Weigth of sample extracted (g) | | M | 0.00000 | % Moisture | | Cpnd Variable | | Local Compound Variable | | CONC | ENTR | AT | T | ONS | |------|------|----|---|-----| | | | | | | | ON-COLUMN | FINAL | | |-----|--------------------------|----------|--------|--------|----------|-----------|-----------------------------|---| | Co | mpounds | RT I | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | === | | | | | | | 100 ACO COE ACO GOS BOY BOY | | | \$ | 3 a,a,a-Trifluorotoluene | 12.946 | 12.948 | -0.002 | 15730 | 19.1542 | 19.154 | ۵ | | S | 5 GRO | 7.569-22 | 2.338 | | 2962051 | 414.921 | 414.92 (b) (6) | Í | | \$ | 9 4-Bromofluorobenzene | 20.500 | 20.502 | -0.002 | 14122 | 19.1964 | ^{414.92} (b) (6) | | Data File: 091006a14_009.d Report Date: 13-Sep-2006 04:58 ### STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14_009.d Lab Smp Id: ical chk Client Smp ID: ical chk Inj Date : 10-SEP-2006 16:36 Operator : estesw Inst ID: inst13-14.i Smp Info : ical chk Misc Info : ical chk Comment Method : \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 inst13-14. Quant Type: ESTD Als bottle: 1 QC Sample: LCS Dil Factor: 1.00000 Integrator: HP Genie Compound Sublist: GRO.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | | |--------------------------------------|----------------|---|-----| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted % Moisture Local Compound Variable | (g) | | chiid variabie | | nocar comboning variable | | | | | | | | ON-COLUMN | FINAL | |-----------------------------|---------|--------|---------|----------|-----------|---------| | Compounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | m = m = | | ======= | | ***** | | | \$ 2 a,a,a-Trifluorotoluene | 12,936 | 12.940 | -0.004 | 15834 | 19.6235 | 19.623 | \$ 2 a,a,a-Trifluorotoluene 12.936 12.940 -0.004 15834 19.6235 19.623 \$ 3 GRO 7.504-22.318 3029717 400.976 400.98 \$ 4 4-Bromofluorobenzene 20.485 20.488 -0.003 14332 19.8817 19.882 CONCENTRATIONS Data File: 091006a14_001.d Report Date: 13-Sep-2006 04:58 ### STL Chicago Data file: \\CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\091006a14 001.d Lab Smp Id: rt Client Smp ID: rt Inj Date : 10-SEP-2006 11:57 Smp Info : rt Misc Info : rt Comment : Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091006icalgros.b\gro14s.m Meth Date: 13-Sep-2006 04:58 estesw Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: rt.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |---------------|---------|--------------------------------| | DF | 1 000 | Dilution Factor | | Uf | | Correction factor | | Ws | 5.000 | Weigth of sample extracted (g) | | M | 0.00000 | % Moisture | | Cpnd Variable | | Local Compound Variable | | | | | | | | CONCENTRA | #LIONS | | |------------|--------------------------|--------|--------|---------|----------|-----------|---------|--| | | | | | | | ON-COLUMN | FINAL | | | Con | npounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | 201 XIV 10 | N (1) | | =-==== | ======= | ======= | | | | | | 1 2~methylpentane | 7.623 | 7.623 | 0.000 | 304837 | | (a) | | | \$ | 2 a,a,a-Trifluorotoluene | 12.953 | 12.940 | 0.013 | 15712 | 19.4723 | 19.472 | | | \$ | 4
4-Bromofluorobenzene | 20.506 | 20.488 | 0.018 | 13838 | 19.1965 | 19.196 | | | | 5 1,2,4-trimethylbenzene | 22.098 | 22.098 | 0.000 | 255028 | | (a) | | ### QC Flag Legend a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). Report Date: 13-Sep-2006 05:03 ### STL Chicago Data file : \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\09110614 001.d Lab Smp Id: rt Client Smp ID: rt Inj Date : 11-SEP-2006 06:42 Smp Info : rt Misc Info : rt Comment : Method : \CHI-MS1\chem\gcvoa\inst13-14.i\091106icalgrom.b\gro14m.m Meth Date: 13-Sep-2006 05:02 estesw Quant Type: ESTD Als bottle: 1 Dil Factor: 1.00000 Integrator: HP Genie Integrator: HP Genie Compound Sublist: rt.sub Target Version: 4.14 Processing Host: CHI-BOXFISH Concentration Formula: Amt * DF * Uf * 1/(Ws * (100 - M)/100) * CpndVariable | Name | Value | Description | |--------------------------------------|----------------|---| | DF
Uf
Ws
M
Cpnd Variable | 5.000
5.000 | Dilution Factor Correction factor Weigth of sample extracted (g) % Moisture Local Compound Variable | | | | | | | | CONCENTRA | TIONS | | |-----|---------------------------|--------|--|--------|----------|-----------|---------|---------| | | | | | | | ON-COLUMN | FINAL | | | Com | pounds | RT | EXP RT | DLT RT | RESPONSE | (ug/L) | (ug/Kg) | | | === | | | ###################################### | | | | | | | | 1 2-methylpentane | 7.640 | 7.689 | -0.049 | 302219 | | | | | \$ | 3 a,a,a-Trifluorotoluene | 12.975 | 12.948 | 0.027 | 15770 | 19.2029 | 19.203 | | | S | 5 GRO | 7.569 | -22.338 | | 1911665 | 267.784 | 267.78 | (b) (6) | | \$ | 9 4-Bromofluorobenzene | 20.530 | 20.502 | 0.028 | 13180 | 17.9159 | 17.916 | (3) (3) | | | 12 1,2,4-trimethylbenzene | 22.119 | 22.118 | 0.001 | 247899 | | | | 126 BATCH: \CHI-MS1\chem\gcvoa\inst13-14.i\091106a.b | Data File | Injection Date | Sample Type | Dil Factor | Inst ID | Method | Method Batch | | |-----------------|--------------------|----------------|------------|-----------|----------|--------------|---| | 09110614_010.d | 11-SEP-2006 11:55 | Continuing Cal | 1.00 | inst13-14 | grol4m.m | 091106a.b | + | | 09110614_011.d | 11-SEP-2006 12:30 | BLANK | 1.00 | inst13-14 | gro14m.m | 091106a.b | 1 | | 09110614_012.d | 11-SEP-2006 13:05 | LCS | 1.00 | inst13-14 | gro14m.m | 091106a.b | 1 | | [09110614_013.d | 11-SEP-2006 13:40 | Unknown | 2500.00 | inst13-14 | gro14m.m | 091106a.b | j | | 09110614_014.d | 11-SEP-2006 14:14 | Unknown | 50.00 | inst13-14 | grol4m.m | 091106a.b | ļ | | 09110614_015.d | [11-SEP-2006 14:49 | MS | 50.00 | inst13-14 | grol4m.m | 091106a.b | [| | 09110614_016.d | 11-SEP-2006 15:24 | MSD | 50.00 | inst13-14 | grol4m.m | 091106a.b | | | 09110614_017.d | 11-SEP-2006 15:59 | Unknown | 100.00 | inst13-14 | grol4m.m | 091106a.b | | | 09110614_018.d | 11-SEP-2006 16:34 | Unknown | 100.00 | inst13-14 | grol4m.m | 091106a.b | 1 | | 09110614_019.d | 11-SEP-2006 17:09 | Unknown | 200.00 | inst13-14 | grol4m.m | 091106a.b | 1 | | 09110614_020.d | 11-SEP-2006 17:44 | Unknown | 50.00 | inst13-14 | grol4m.m | 091106a.b | 1 | | 09110614_021.d | 11-SEP-2006 18:18 | Continuing Cal | 1.00 | inst13-14 | grol4m.m | 091106a.b | Ţ | | + | | | .+ | + | + | | + | | Data File | Matrix | Fraction | Lab Sample ID | Lab Prep Batch | Client Sample ID | Client Sample Group | - | |----------------|--------|----------|---------------|----------------|------------------|---------------------|----| | 09110614 010.d | SOLID | VOA | -+ | 122105icalgrom | +
 ccv | 122105icalgrom | -+ | | 09110614_011.d | SOLID | VOA | 189015-1MB | 189015 | 189015-1MB | 122105icalgrom | 1 | | 09110614_012.d | SOLID | VOA | 189015-2LCS | [189015 | 189015-2LCS | 122105icalgrom | | | 09110614_013.d | SOLID | VOA | 248580-7 | 189015 | SS-8 | 248580 | | | 09110614_014.d | SOLID | VOA | 248580-8 | 189015 | SS-9 | 248580 | ĺ | | 09110614_015.d | SOLID | VOA | 248580-8MS | 189015 | SS-9MS | 248580 | j | | 09110614_016.d | SOLID | VOA | 248580~8MSD | 189015 | SS-9MSD | 248580 | | | 09110614_017.d | SOLID | VOA | 248531-17 | 189015 | SB1185-2 | 248531 | | | 09110614_018.d | SOLID | VOA | 248531-18 | 189015 | SB1185-5 | 248531 | ļ | | 09110614_019.d | SOLID | VOA | 248531-20 | 189015 | SB1195-4 | 248531 | 1 | | 09110614 020.d | SOLID | VOA | 248531-22 | 189015 | SB1225-2 | 248531 | i | | 09110614_021.d | SOLID | VOA | ccv | 122105icalgrom | ccv | 122105icalgrom | 1 | | Data File | Compound Sublist | Spike List File | Sample Ref # | QC Group Ref # | Init Cal Ref # | Batch Ref # | |----------------|------------------|-----------------|--------------|----------------|----------------|-------------| | + | | | | + | . | + | | 09110614_010.d | GRO.sub | grow.spk | 16088 | 16111 | 16058 | 16047 | | 09110614_011.d | GRO.sub | grow.spk | 16090 | 16111 | 16058 | 16047 | | 09110614_012.d | GRO.sub | grow.spk | 16092 | 16111 | 16058 | 16047 | | 09110614_013.d | GRO . sub | grow.spk | 16094 | 16111 | 16058 | 16047 | | 09110614_014.đ | GRO.sub | grow.spk | 16096 | 16111 | 16058 | 16047 | | 09110614_015.d | GRO.sub | grow.spk | 16098 | 16111 | 16058 | 16047 | | 09110614_016.d | GRO.sub | grow.spk | 16100 | 16111 | 16058 | 16047 | | 09110614_017.d | GRO.sub | grow.spk | 16102 | 16111 | 16058 | 16047 | | 09110614_018.d | GRO.sub | grow.spk | 16104 | 16111 | 16058 | 16047 | | 09110614_019.d | GRO.sub | grow.spk | 16106 | 16111 | 16058 | 16047 | | 09110614_020.d | GRO.sub | grow.spk | 16108 | 16111 | 16058 | 16047 | | 09110614_021.d | GRO.sub | grow.spk | 16110 | 16111 | 16058 | 16047 | | + | + | | + | | | | Page 1 STL Chicago 127 BATCH: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b | Data File | Injectio | on Date | Sample Type | Dil Factor Inst ID | Method | Method Batch | |-----------------------|-----------|------------|---|--------------------|--|---------------------| | 091006a14_010.d | 10-SEP-2 | 2006 17:11 | Continuing Cal | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_011.d | 10-SEP-2 | 2006 17:46 | BLANK | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_012.d | 10-SEP-2 | 2006 18:20 | LCS | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_013.d | 10-SEP-2 | 2006 18:55 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_014.d | 10-SEP-2 | 2006 19:30 | MS | 1.00 inst13-14 | gro14s.m | 091006b.b | | 091006a14_015.d | 10-SEP-2 | 2006 20:05 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_016.d | 10-SEP-2 | 2006 20:40 | Unknown | 1.00 inst13-14 | gro14s.m | 091006b.b | | 091006a14_017.d | 10-SEP-2 | 2006 21:15 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_018.d | 10-SEP-2 | 2006 21:50 | Unknown | 1.00 inst13-14 | gro14s.m | 091006b.b | | 091006a14_019.d | 10-SEP-2 | 2006 22:24 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14_020.d | 10-SEP-2 | 2006 22:59 | Unknown | 1.00 instl3-14 | grol4s.m | 091006b.b | | 091006a14_021.d | 10-SEP-2 | 2006 23:34 | Continuing Cal | 1.00 inst13-14 | grol4s.m | 091006b.b | | 091006a14 022.d | 11-SEP-3 | 2006 00:09 | Unknown | 1.00[inst13-14 | gro14s.m | 091006b.b | | 091006a14_023.d | 11-SEP-2 | 2006 00:44 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b.b | | + | | | *************************************** | | « • • • • • • • • • • • • • • • • • • • | | | Data File | Matrix | Fraction | Lab Sample ID | Lab Prep Batch | Client Sample ID | Client Sample Grou | | 091006a14_010.d | SOLID | VOA | ccv | 080305 | ccv | 080305 | | 091006a14 011.d | SOLID | VOA | mb | 080305 | cim | 080305 | | 091006a14 012.d | SOLID | VOA | LCSG06I10DSA | 080305 | lcs | 080305 | | 091006a14 013.d | SOLID | VOA | 248580-1 | 188923 | SS-1 | 248580 | | 091006al4 014.d | SOLID | VOA | 248580-1MS | 188923 | SS-1MS | 248580 | |
 091006a14 015.d | SOLID | VOA | 248580-1MSD | 188923 | SS-1MSD | 248580 | | 091006a14 016.d | SOLID | voa | 248580-2 | 188923 | SS-3 | 248580 | | _
 091006a14 017.d | SOLID | VOA | 248580-3 | 188923 | SS-4 | 248580 | | 091006a14_018.d | SOLID | VOA | 248580-4 | 188923 | SS-5 | 248580 | | 091006a14_019.d | SOLID | VOA | 248580-5 | 188923 | 88-6 | 248580 | | 091006a14_020.d | SOLID | VOA | 248580-6 | 188923 |
 SS-7 | 248580 | | 091006a14_021.d | SOLID | VOA | ccv | 080305 | cev | 080305 | | 091006a14 022.d | SOLID | VOA | 248531-13 | 080305 | 248531-13 | 080305 | | 091006a14_023.d | SOLID | VOA | 248531-14 | 080305 | 248531-14 | 080305 | | + | ‡ | + | 4 | 4 | + | + | | Data File | Compound | d Sublist | Spike List File | Sample Ref # QC | Group Ref # Init Cal | l Ref # Batch Ref # | | 091006a14_010.d | GRO. sub | | grow.spk | 15894 | 15933 | 15872 12517 | | 091006a14_011.d | GRO.sub | | grow.spk | 15896 | 15933 | 15872 12517 | | 091006a14_012.d | GRO.sub | | grow.spk | 15898 | 15933 | 15872 12517 | | 091006a14_013.d | GRO. sub | | grow.spk | 15900 | 15933 | 15872 12517 | | 091006a14_014.d | GRO.sub | | grow.spk | 15902 | 15933 | 15872 12517 | | 091006a14_015.đ | GRO.sub | | grow.spk | 15904 | 15933 | 15872 12517 | | 091006a14_016.d | GRO . sub | | grow.spk | 15906 | 15933 | 15872 12517 | | 091006a14_017.d | GRO.sub | | grow.spk | 15908 | 15933 | 15872 12517 | | 091006a14_018.d | GRO. sub | | grow.spk | 15910 | 15933 | 15872] 12517 | | 091006a14_019.d | GRO.sub | | grow.spk | 15912 | 15933 | 15872 12517 | | 091006a14_020.d | GRO.sub | | grow.spk | 15914 | 15933 | 15872 12517 | | 091006a14_021.d | GRO.sub | | grow.spk | 15916] | 15933 | 15872 12517 | | 091006a14_022.d | GRO . sub | | grow.spk | 15918 | 15933 | 15872 12517 | | _ | GRO.sub | | grow.spk | 15920 | 15933 | 15872 12517 | Page 1 BATCH: \CHI-MS1\chem\gcvoa\inst13-14.i\091006b.b | Data File | Injectio | on Date | Sample Type | Dil Factor Inst ID | Method | Method B | atch | | | |-----------------------|-----------
------------|-----------------|--|--------------------|-------------------|-------------|--|--| | 091006a14_024.d | 11-SEP-2 | 2006 01:19 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b. | b | | | | 091006a14_025.d | 11-SEP-2 | 2006 01:54 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b. | b | | | | 091006a14_026.d | 11-SEP-2 | 2006 02:28 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b. | b | | | | 091006a14_027.d | 11-SEP-2 | 2006 03:03 | Unknown | 1.00 inst13-14 | grol4s.m | 091006b. | b | | | | 091006a14_028.d | 11-SEP-2 | 2006 03:38 | Unknown | 1.00 inst13-14 | 4 grol4s.m | 091006b. | b | | | | 091006a14_029.d | 11-SEP-2 | 2006 04:13 | Unknown | 1.00 inst13-14 | 4 grol4s.m | 091006b. | b | | | | 091006a14_030.d | 11-SEP-2 | 2006 04:48 | Unknown | 1.00 inst13-14 | 4 grol4s.m | 091006b. | b | | | | 091006a14_031.d | 11-SEP-2 | 2006 05:23 | Continuing Cal | 1.00 inst13-14 | grol4s.m | 091006b. | b | | | | Data File | Matrix | Fraction | Lab Sample ID | Lab Prep Batch | Client Sample | e ID Client S | ample Group | | | | + | + | + | | | | 1 | | | | | 091006a14_024.d | SOLID | VOA | 248531-15 | 080305 | 248531-15 | 080305 | | | | | 091006a14_025.d | SOLID | VOA | 248531-16 | 080305 | 248531-16 | 080305 | | | | | 091006a14_026.d | SOLID | VOA | | | • | 080305 | | | | | 091006a14_027.d | SOLID | VOA | 248531-21 | | • | 080305 | | | | | 091006a14_028.d | SOLID | VOA | 248531-23 | | | | 080305 | | | | 091006a14_029.d | SOLID | VOA | 248531-26 | 080305 0 | | 080305 | | | | | 091006a14_030.d | SOLID | VOA | 248531-23 | 080305 | 080305 | | | | | | 091006a14_031.d | SOLID | VOA | ccv
 + | 080305 | ccv |] 080305 | | | | | Data File | Compound | i Sublist | Spike List File | e Sample Ref # (| QC Group Ref # In: | it Cal Ref # Batc | h Ref # | | | | +
 091006a14_024.d | GRO.sub | | grow.spk | 15922 | 15933 | 15872 | 12517 | | | | 091006a14_025.d | GRO.sub | | grow.spk | 15924 | 15933 | 15872 | 12517 | | | | 091006a14_026.d | GRO.sub | | grow.spk | 15926 | 15933 | 15872 | 12517 | | | | 091006a14_027.d | GRO sub | | grow.spk | 15928 | 15933 | 15872 | 12517 | | | | 091006a14_028.d | GRO . sub | | grow.spk | 15930 | 15933 | 15872 | 12517 | | | | 091006a14_029.d | GRO. sub | | grow.spk | 15932 | 15933 | 15872 | 12517 | | | | 091006a14 030.d | GRO sub | | grow.spk | 15998 | 15933 | 15872 | 12517 | | | | | | | | | | | | | | Page 2 # STL Chicago Corrective Action/Qualification Report GC VOA | CHI-22-19-009/B-06/ | Page No. | |---------------------|----------| | 6/02 | 30 | | Analytical Methods: | Method Blank | | |---|--
--| | SW-846 8021B SW-846 8015B (Mod) (Define) | Description of situation. | A CONTRACTOR OF THE | | SW-846 8015B Other (Define): | | | | 1 | Action Taken | | | Surrogate LabNet ID: (505110557) | | | | | Demonstration of Control: | | | Spike LabNet ID: (SOS 107 W ST | | | | | | | | | Description of Situation | AV-S | | Initial Calibration Criteria 39 1006 124 GRAS | | | | Description of Orderson, | | | | | ACTION TO | | | Action Taken: | | | | | Demonstration of Control: | The state of s | | Demonstration of Control | | | | | | | | CAH BOWK A | Qualification of Data Data Affected (Client/Sample #) | | | Continuing Calibration Criteria | | - The state of | | Description of Situation: | Qualification: | | | | | TARACAS AND | | Action Taken: | | | | | Associated samples realitalyzed. The qualified and narrated: | and narrated: | | Demonstration of Control: | Explanation for no realitaly standard moon for the second | | | | 6) | 3 | | | Analyst Signature/date <u>O</u> | icago | | | Reviewer Signature/date | Ch | | | | ST L | | | | S | STL Chicago GC Volatile Analysis Logbook | | NATURE AND ADDRESS OF THE PROPERTY PROP | | | | <u></u> | Campania | | |----------------------|--|------------------------|------------------------|---|--|---|---| | File Name Job Number | Sample ID | | | | 2 1 | (MUST include SRN's) | Analyst
Initials | | | | 7 A | | | 188 | 1-0066 | (b)
(6) | | | | | | | \$5.2.73 | 1252+537h | | | m3 1c-so | Callend 1 | | | | * | , | | | est 10-100 | 2 | | | | ~ | · v | | | @S 1C-200 | 2 | | | | 7 10 | 0 | | | 06 1c-400 | | | | | \$ 26 | 2 63 | | | 007 10-600 | N | | | | 70 | , 2 | . , | | 008 10-1000 | 4 | | | | \$ 50 | 7 24 | | | 009 latck | | | | | \$
20 | 1, 1, 2 | | | 010 000 | | | | | | e pts | | | OII MB | | | | | | | 6.5 | | 277 210 | | | N A | T | | | الم | | 013 248580-1 | A Principle of the Control Co | | 1000 | | | | | | 014 | | | | | | +104C9C=CASTADA | 7. | | 015 | 4111111 | - | + | F | 1 | -xlancar = castlor | | | ate: (b) (6) | 9-11-0 | Reviewe | er Signatur | /Dat | | Page No. | | | | | | | 111. | | | STL | | | ass 10-50 ass 10-50 ass 10-50 ass 10-500 ass 10-600 ass 10-600 ass 10-600 ass 10-600 ass 10-600 | Job Number Sample 1 | Job Number Sample 1 | Job Number Sample ID Sparge Sample Wr. I Vol. | 100 Number Sample ID Sparge Sample Ins No. | 10 Number Sample ID Sparge Sample Instr. pH No. | 100 Number Sample ID Sample 1001 21 | GC Volatile Analysis Logbook STL Chicago Instrument ID# 14 Analysis Date / Time 9-11-06 Analyst Signature/Date: (26) 000 100 7884 2224 OST 2259 2115 0503 0154 CV44 0333 0413 9228 200 CARN NAMED AND THE PROPERTY OF File Name 3 OF 1248580-7 $\frac{c}{\mathcal{L}}$ 02 9 g 023/2/8531-19 024 072 248531-13 072 248531-13 076 200 2 020 070 820 CCV Job Number دی S -4 €-5 \sqrt{N} $\ddot{\mathcal{L}}$ in in 5 5 مَّ Sample ID 4-11-06 Sparge No. F Reviewer Signature/Date: 水 CAUSE! である。 Sample Wt. / Vol. Di Instr 5 + 2모 55-1mgs 1-41 + Payl She GOSTIUDAD Comments (MUST include SRN's) Page No. STL Chicago (b) (6) Analyst Initials STL Chicago GC Volatile Analysis Logbook | Instrument ID# 14 Analysis Date / Time | D# 14 File Name | Job Number | Sample ID | Sparge
No. | Sample
Wt. / Vol. | × 0 | y. Instr. | | |--|------------------|------------|--|---------------|----------------------|-----|------------|-------------| | | 22 | | | | MINER | | | 53636 | | 6760 | 1 2 1 | And the second s | | | - | - | | | | | | | | | | | | | 1 | - | | | | | | | | | | Analyst Sig | gnature/Date: 06 | | Analyst Signature/Date: ©© Analyst Signature/Date: Page No. In the second of seco | Review | er Signa | ŧ l | ature/Date | ature/Date: | | And the second s | | | | | 100 | | | | Spike LabNet ID: 1000 I OE Description of Situation: 8-100 PM TO TO TO **Initial Calibration Criteria** Action Taken: Demonstration of Control Surrogate LabNet ID: 1880 H88 Other (Define): SW-846 8015B (Mod) (Define) Description of situation. Method Blank 40CFR 602 SW-846 8015B SW-846 8021B Analytical Methods: Batch Number: 09406 ## Corrective Action/Qualification Report GC VOA STL Chicago A CONTRACTOR OF THE PARTY TH The state of s CS Action Taken: Description of Situation: **Demonstration of Control:** Explanation for no reanalysis/data MUST be qualified and narrated. Associated samples reanalyzed: Data Affected (Client/Sample #) Demonstration of Control: Qualification: Qualification of Data Action Taken: Yes No (see below) **Continuing Calibration Criteria** GO TO SIT Description of Situation: Action Taken: Demonstration of Control: Reviewer Signature/date Analyst Signature/date <u>©</u> © STI Chicago STL Chicago GC Volatile Analysis Logbook CHI-22-19-009/B | Instrument ID# 14 Analysis | 44 | ich Number | Sample ID | Sparge | Sample | | <u> </u> | Comments
(MUST include SRN's) | |----------------------------|---------------|---------------------------|--
--|--|------------|----------|----------------------------------| | Date / Time | File Name | Job Millings | | - 1 | Wt. / Vol. | | | if in the land | | 9-11-66 | 66 MIDE 14 DA | 7 | | F | S. P. S. | F | 100 | 100 + 100 | | 067 1 | 3110611 | 05.0 | | | | | | 55 +2.5.L.S.d | | 0//6 | 6 | | | | | | | | | 0751 | 500 | 10-50 | | | | | 7 | S | | 0,826 | \$ | 16-100 | | | | | | | | Color | A 60 | | | | - | | | 9 | | 0901 | 8 | | | | | | | i d | | 0936 | 360 | 16-400 | | | | | | 30 | | ō | 007 | 10-600 | | | | | | | | 1044 | | 1 | - | | | | <u> </u> | 8 | | | | | and the second s | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | 26 + long GRE | | 3211 | | A market sound of British | A STATE OF THE PARTY PAR | | | | | +1071 Std = COST 1184 | | SSII | 010 | 010 CLV | THE REAL PROPERTY AND ADDRESS OF THE ADDRESS OF THE PROPERTY AND | | | | | | | 1730 | 01 | OII MA | | | | | | | | 1706 | | | | | - | - | | +10th SAK = CARTIN DEA | | 1503 | | 2 14000-7 2600 | 9 | | Sales Sales |) Williams | | | | 1340 | | 7,00000,7 | | | Control of the | , = | | Maria ang pagangangan kan | | 14,14 | 0)4 | 4 850 | | | - Trans | | | F | | [AA] | 015 | | 8ms,50 | | + | | (| I List And | | Analyst Sig | nature/Date: | | 9-12-06 | Reviev | Reviewer Signature/Date: | re/Date: | | Date: rage No. as L | | , | | | 7.00 | of Comments of the | The state of s | | | | | GC | | |----------|---------| | Volatile | U F | | Analysis | CHICARO | | Logbook | | | Sample Sample Sample Comments Comm | |--| | Job Number Sample ID Sparge Sample Inst. PH (ABSBD-B MS) 500 MA (AMARIA) 1/520 MA (SAMBRA) 1/600 (S | | Sample ID Spaige Sample Inst. PH No. GAMBRIA 1/520 NA 764 Spaige Wit (vol. Dil. <2 GAMBRIA 1/520 NA 764 Spaige Wit (vol. Dil. <2 GAMBRIA 1/520 NA 764 Spaige Wit (vol. Dil. <2 GAMBRIA 1/520 NA 764 N | | Sparge Sample Instr. pH No. W. I Vol. Dil. <2 Smilerio Vol. Dil. <2 Smilerio Vol. Dil. <2 Smilerio Vol. Dil. <2 Smilerio Vol. Dil. <2 Smilerio Vol. Dil. <2 Reviewer Signature/Date: | | | | | | Con (MUST in Con) | | Comments (MUST include SRN's) Analyst Analyst Page No. Page No. STL Chicago, Analyst Conments Analyst Analyst Analyst | 13 GRO Sals HT %20 JAK C | | | 17 N SB1 | | 16 N SB1 | | | 15 N CR1 | 14 N SB1 | | 13 N SB1 | Sample # QC Client | Method Code: Job Number: Project Number: | Surrogate Reagent: | rpjah | Total Control of the | |----|----
--|-----------------|---|---------------------------------------|---|---|-----------------------------------|---|--------------------|---|---|--|----------|---| | | | SB1185-2 | | SB1175-4 | | | SR1165-4 | SB1155-3 | | SB1155-2 | ent Sample ID | 8015G
248531
20006654 | ent: | | | | | | | | | | 7 | | | | | | <pre>IPH - Gasoline Range Organics Customer Job ID: GSA - SLOP GSA - SLOP</pre> | | | | | | | SOIL | | SOIL | | | SULL SULL SULL SULL SULL SULL SULL SULL | SOIL | | SOIL | Matrix | nics (GRO)
SLOP | | | | | | | 09/20/2006 | 4 | 09/20/2006 | | | 300C/00C/00 | 09/20/2006 | | 09/20/2006 | HT Date | Holdi
Custo
Proj. | | Job A | | | | | 09/21/2006 | | 09/21/2006 | | | 700C/ 1C/ 00 |
09/21/2006 | | 09/21/2006 | TAT Date | ng Time
merFEI
Cat: FEI | <i>477</i> 407 1 | nalysis | * | | | | 09/20/2006 09/21/2006 K3110LA OT 1/160 | Mills Condition | 09/20/2006 09/21/2006 WINN AL 075 V | | | | 09/20/2006 09/21/2006 MMH 23-35KC | | Arsi Arsis | File Name | Holding Time: 14 Day Holding Time Customer: SCS Engineers, Inc. Proj. Cat: FED-MISC PM: rcw | | S His | | | | \$ | | | | | F 8 | - | R | 6 | Ž. | Dil Tun | olding T
neers, I
M: ro | | tory | | | | | 32 | | | | | | | | | Tune name A | | | | | | | | L. Marine | | | | | | | | | ction Anal | Hardcopy D | | | | | | | 18015 | | | | | | | | 1.12822
1.12822 | Action Analst Prep Batch Comments | Contacue Date: | | | Ž | | 77 | | 337, 67 92 | 1012 | 24) | | Section 2 | 200 | | | 25 | Comments | Job Report Type Contact.: David Brewer Fax Due Date.: | | | | | | | The state of s | | *************************************** | , , , , , , , , , , , , , , , , , , , | *************************************** | | | | | *************************************** | .: (4qfnd) | A CONTRACTOR OF THE PARTY TH | 13'
% | 7 | Page 1 STL Chicago | rpjah | | ************************************** | | Job A | nalysis | H i s | tory | | | | | 138
≲ | |------------------------------|---|--|---------|-------------------------|--|---|------------------
--|--------------------------|-----------------------------------|---|--| | Surrogate | ate Reagent: | | | | 09/08/20 |)06 | | | | | | | | Method
Job Nur
Project | Method Code: 8015G Job Number: 248531 Project Number.: 20006654 | TPH - Gasoline Range Organics
Customer Job ID: GSA - SLOP
GSA - SLOP | s (GRO) | Holdi
Custo
Proj. | Holding Time:
Customer:
Proj. Cat: FED-M | Holding Time: 14 Day Holding Time Customer: SCS Engineers, Inc. Proj. Cat: FED-MISC PM: rcw | olding
neers, | Time
Inc. | C
Hardcopy Due Date.: | Contac | Job Report Type: L4qfnd
Contact.: David Brewer
Fax Due Date.: | 4qfnd | | Sample 7 | # QC Client Sample I | ID Mat | Matrix | HT Date | TAT Date | File Name | Dil Tu | Tune name A | Action Anals | Action Analst Prep Batch Comments | Comments | | | 18 | N S81185-5 | 1108 | | 09/20/2006 | 09/21/2006 | 3/20/2006 09/21/2006 09/2/05/08 | 8 | 3 | 2 | | 314,0905 819 | (v)_==================================== | | | | | | | | | \$ | | | | | The state of s | | 19 | N SB1195-3 | 301L | | 09/20/2006 | 09/21/2006 | 09/20/2006 09/21/2006 Minding St. | 3, | | | 188973 | 244.15 | | | 20 | N CR1105-4 | 200 | | 2006/201 | 00/21/2004 | 00/20/2006 00/21/2006 03/14/14 00/16/ | | 2 | | | 200 (0th) | | | | | | | | | | \$ | | | | | | | 21 | N SB1215-3 | 110S | | 09/20/2006 | 09/21/2006 | 09/20/2006 09/21/2006 Makin 6275/ | 2 | | | 1686725 | 824 | | | | | | | | | | | | | |) | | | 22 | N SB1225-2 | SOIL | | 09/20/2006 | 09/21/2006 | 09/20/2006 09/21/200697110LH 20-1/52 | For | The state of s | ** | | 56,470% 65 | | | | | | | | | | A | | 925 | | | | | | | | | | | | ì | | | | | *************************************** | | | | | | | 3 | rpjah
Surroga | rpjah
Surrogate Reagent: | | | Job An | nalysis
09/08/2006_ | ± | t 0 7 | ۳ ۷ | | | | | 139
กั | |---|--|--|--------------------|-------------------------|---|---|----------------|--------------------|--------|----------------------------|--|---
---| | Method
Job Num
Project | Method Code: 8015G Job Number: 248531 Project Number: 20006654 | TPH - Gasoline Range Organics (GRO)
Customer Job ID: GSA - SLOP
GSA - SLOP | nics (GRO)
SLOP | Holdi
Custo
Proj. | ng Time
mer
Cat: FEC | Holding Time: 14 Day Holding Time Customer: SCS Engineers, Inc. Proj. Cat: FED-MISC PM: rcw | oldir
neers | ng Time
s, Inc. | Hardco | Co.
Hardcopy Due Date.: | Contac
Date.: | Job Report Type: L4qfnd
Contact.: David Brewer
Fax Due Date.: | 4qfnd | | Sample # | Sample # QC Client Sample ID | | Matrix | Hĭ Date | TAT Date | File Name | Dit | name | Action | Analst | Action Analst Prep Batch Comments | Comments | | | 23 | N SB1225-4 | | SOIL | 09/20/2006 | 09/21/2006 | 09/20/2006 09/21/2006 MWM & BOOS/05/00 | F | 38 | | | 188923 547,78 | 97.78 | | | | | | | | *************************************** | | R | | | | | | | | 26 | N SB1135-5 | | SOIL | 09/19/2006 | 09/21/2006 | 09/19/2006 09/21/2006 MINNING SUPER | 3 | | | | | R. C. | | | *************************************** | | | | | | | | | | | The second secon | | *************************************** | | 27 | N SB1145-3 | | S01L | 09/19/2006 | 09/21/2006 | 09/19/2006 09/21/2006 Millian 11 030 Str | * | | | | | 38 | A. M. | | | | | : | Fana 3 | | | | | | | | *************************************** | ### % Solids Determination | Method Cod
Batch Code
Status | } : | 1888 | 99 | Batch Date: 09/09/06
Batch Time: 1817
User Name: clb | Calc Code | : SOI
e: %S0
Code: 572 | OL | Equipment
Import Cod | | | |------------------------------------|------------|----------|--------------------------|--|-----------|------------------------------|-----------|-------------------------|------------------|------------| | SAMPLE: | Grp | Pos | Sample ID | | Dilution | %SOLID
% | IWGT
g | FWGT
g | DRYWT
g | WETWT
g | | | 1 | 1 | S_MB | | | 0.0 | 8.8646 | 0.0020 | 1.2714 | 10.1340 | | | 1 | 2 | 248531_1_s | | | 92.2 | 10.1462 | 9.3527 | 10.6190 | 11.4125 | | | 1 | 3 | 248531_1_s | _MD2 | | 92.9 | 8.7536 | 8.1320 | 9.3943 | 10.0159 | | | 1 | 4 | 248531_2_s | | | 82.0 | 9.6814 | 7.9349 | 9.2004 | 10.9469 | | | 1 | 5 | 248531_3_s
248531_4_s | | | 75.9 | 9.7113 | 7.3668 | 8.6319 | 10,9764 | | | 1 | 6 | 248531_4_s | | | 83.9 | 8.9561 | 7.5166 | 8.7718 | 10.2113 | | | 1 | 7 | 248531_5_s | | | 83.1 | 9.5853 | 7.9667 | 9.2171 | 10.8357 | | | 1 | 8 | 2485 3 1_6_s | | | 81.4 | 9.2255 | 7.5108 | 8.7572 | 10.4719 | | | 1 | 9 | 248531_7_s | and the lateral like | | 82.3 | 8.9067 | 7,3322 | 8.5744 | 10.1489 | | | 1 | 10 | 2485 3 1_8_s | | | 96.9 | 9.4472 | 9.1575 | 10.4482 | 10.7379 | | | 1 | 11 | 248531_9_s | · · · · · · | | 79.2 | 8.9986 | 7.1229 | 8.4110 | 10.2867 | | | 1 | 12 | 248531_10_ | \$ | | 88.5 | 8.7520 | 7.7495 | 9.0292 | 10.0317 | | | 1 | 13 | 248531_11_ | | | 80.2 | 8.9708 | 7.1931 | 8.4734 | 10.2511 | | | 1 | 14 | 248531_12_ | S | | 88.4 | 9.1348 | 8.0780 | 9.3525 | 10.4093 | | | 1 | 15 | 248531_13_ | S | | 85.4 | 9.2677 | 7.9130 | 9.1876 | 10.5423 | | | 1 | 16 | 248531_14_ | | | 83.7 | 9.4887 | 7.9459 | 9.2168 | 10.7596 | | | . 1 | .17 | 248531_15_ | | | 79.9 | 9.0293 | 7.2118 | 8.4762 | 10.2937 | | | 1 | 18 | 248531_16_ | | | 78.9 | 9.0337 | 7.1246 | 8.3866 | 10.2957 | | | 7 | 19 | 248531_17_ | | | 85.8 | 9.5717 | 8.2153 | 9.4660 | 10.8224 | | | 4 | 20 | 248531_18_ | S | | 86.8 | 9.2252 | 8.0076
7.2665 | 9.2559
8.5136 | 10.4/33 | | | 4 | 21
22 | 248531_19_ | | | 78.8 | 9.6211 | 7.8032 | 9.0512 | 10.4638 | | | .1 | 22 | 248531_20_ | 3 | | 81.1 | 7,0211 | 1.6032 | 7.0312 | 10.0071 | ### % Solids Determination | Method Code:
Batch Code:
Status: | 188899 | Batch Date: 09/09/06
Batch Time: 1817
User Name: clb | Calc Code | : SOI
e: %SO
Code: 577 | OL | Equipment
Import Cod | | | |--|--|--|-----------|--|------------|-------------------------|--|-----------| | SAMPLE: Grp | Pos Sample 1 | D | Dilution | TARE
g | ASHWT
g | FASHWT
g | %MOIST
% | %ASH
% | | 1
1
1
1
1
1
1
1
1
1
1
1 | 1 S_MB
2 248531_3
3 248531_4
4 248531_3
5 248531_4
7 248531_6
9 248531_6
9 248531_6
10 248531_1
11 248531_1
12 248531_1
14 248531_1
15 248531_1
16 248531_1
17 248531_1
18 248531_1
19 248531_1
20 248531_2
21 248531_2
22 248531_2
22 248531_2
23 248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2
248531_2 | S MD 2
 S S S S S S S S S S | | 1.2694
1.2663
1.2623
1.2655
1.2651
1.2552
1.2504
1.2464
1.2422
1.2907
1.2881
1.2797
1.2803
1.2745
1.2746
1.2709
1.2644
1.2620
1.2507
1.2483
1.2471
1.2480 | | | 100.0 7.8 7.1 18.0 24.1 16.1 16.9 18.6 17.7 3.1 20.8 11.5 19.8 11.6 14.6 16.3 20.1 21.1 14.2 13.2 21.2 | | *** ### % Solids Determination | Method Code: Batch Code: Status: | 188859 | ł | Batch Date: 09/08/06
Batch Time: 1152
User Name: Lp | Calc | ode
Code
tion Code | : %sc | OL. | Equipment
Import Cod | | | |---|---|----------|---|--------|--|---|--|--|---|---| | SAMPLE: Grp | Pos Sa | ample ID | | Diluti | | SOLID | IWGT
g | FWGT
g | DRYWT
g | WETWT
9 | | 1
1
1
1
1
1
1
1
1
1
1
1
1 | 3 24
4 22
5 24
6 24
7 2 2
8 22
10 24
11 2
13 2
14 2
15 2
16 2
17 18 2
18 2
19 2 | S_MB | MD5 | |
79
88
78
78
86
76
80
81
77
77
79
78
22
76
76 | 5.1
9.7
3.2
3.9
3.6
6.6
6.6
6.1
7.9
4.6
7.4
9.8
3.4
6.1
6.1
6.1
6.1 | 9.8296
9.7580
10.0730
10.1601
10.4117
10.0764
10.3081
10.1621
10.4477
9.9782
10.3843
10.4547
10.2111
10.5795
10.5580
10.3581
9.9502
10.4624
10.3413
10.1728 | 0.0022
9.2839
8.0255
8.9588
8.2177
7.9304
8.9289
7.7869
8.3685
8.1692
8.0876
7.8043
7.9054
8.4474
8.2825
0.2610
7.5688
7.7934
7.8788 | 1.2830
10.5342
9.2968
10.2253
9.5044
9.2184
10.2047
9.0734
9.6451
9.4539
9.3558
9.0737
9.1956
9.7360
9.5418
1.5178
8.8357
9.2352
9.0550
9.1422 | 11.1104
11.0083
11.3443
11.4266
11.6984
11.5839
11.4486
11.7243
11.6525
11.7241
11.5013
11.8681
11.8173
11.6149
11.2171
11.7481
11.7481
11.6029
11.4362 | *** ### % Solids Determination | Method Cod
Batch Cod
Status | e: | 1888 | 59 | Batch Date: 09/08/06
Batch Time: 1152
User Name: Lp | Calc Code | : SO
e: %S
Code: 57 | OL | Equipment
Import Cod | | | |-----------------------------------|---|---|-----------|---|-----------|--|------------|-------------------------|--|-----------| | SAMPLE: | Grp | Pos | Sample ID | | Dilution | TARE
g | ASHWT
g | FASHWT
g | %MOIST
% | %ASH
% | | | ~ ~ 1 ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
2
3
4
5
5
6
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | S_MB | 5 | | 1.2808
1.2503
1.2713
1.2665
1.2867
1.2880
1.2758
1.2665
1.2766
1.2847
1.2682
1.2694
1.2902
1.2886
1.2593
1.2568
1.2669
1.2568
1.2669
1.2857
1.2616
1.2634
1.2590 | | -1.2808 | 100.0
4.9
20.3
11.8
21.1
21.3
13.4
23.4
19.9
18.1
22.1
25.4
22.6
20.2
21.6
97.5
23.9
24.0
24.6
25.6 | -58218.2 | ## SEVERN TRENT LABORATORIES ANALYTICAL REPORT JOB NUMBER: 248554 Prepared For: SCS Engineers, Inc. 10975 El Monte Suite 100 Overland Park, KS 66211 Project: GSA - SLOP Attention: David Brewer Date: 09/25/2006 Signature Date Name: Richard C. Wright Title: Project Manager E-Mail: rwright@stl-inc.com STL Chicago 2417 Bond Street University Park, IL 60466 PHONE: (708) 534-5200 FAX..: (708) 534-5211 This Report Contains (_____) Pages ### SAMPLE INFORMATION Date: 09/25/2006 Job Number:248554Project Number:20006654Customer...:SCS Engineers, Inc.Customer Project ID...:GSA - SLOPAttn.....:David BrewerProject Description...:GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 248554-1 | SB1265-1 | Soil | 09/07/2006 | 07:20 | 09/08/2006 | 09:50 | | 248554-2 | SB1265-4 | Soil | 09/07/2006 | 07:40 | 09/08/2006 | 09:50 | | 248554-3 | SB1275-4 | Soil | 09/07/2006 | 08:00 | 09/08/2006 | 09:50 | | 248554-4 | SB1285-1 | Soil | 09/07/2006 | 09:20 | 09/08/2006 | 09:50 | | 248554-5 | SB1295-1 | Soil | 09/07/2006 | 09:40 | 09/08/2006 | 09:50 | | 248554-6 | SB1305-1 | Soil | 09/07/2006 | 10:50 | 09/08/2006 | 09:50 | | 248554-7 | SB1305-3 | Soil | 09/07/2006 | 11:00 | 09/08/2006 | 09:50 | | 248554-8 | SB1315-1 | Soil | 09/07/2006 | 11:20 | 09/08/2006 | 09:50 | | 248554-9 | SB1325-2 | Soil | 09/07/2006 | 13:20 | 09/08/2006 | 09:50 | | 248554-10 | SB1335-1 | Soil | 09/07/2006 | 15:15 | 09/08/2006 | 09:50 | | 248554-11 | SB1335-4 | Soil | 09/07/2006 | 15:30 | 09/08/2006 | 09:50 | | 248554-12 | SB1345-1 | Soil | 09/07/2006 | 15:50 | 09/08/2006 | 09:50 | | 248554-13 | SB1345-4 | Soil | 09/07/2006 | 16:10 | 09/08/2006 | 09:50 | | 248554-14 | SB112 | Water | 09/07/2006 | 16:20 | 09/08/2006 | 09:50 | | 248554-15 | SB118 | Water | 09/07/2006 | 16:40 | 09/08/2006 | 09:50 | LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1265-1 Date Sampled....: 09/07/2006 Time Sampled....: 07:20 Sample Matrix...: Soil Laboratory Sample ID: 248554-1 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|---|-----------------|-------|---|---|---|--|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND
26000 | ם
ח ח ח
ח | | 680
560
540
590
440
450
400 | 2000
2000
2000
2000
2000
2000
2000
200 | 100.000
100.000
100.000
100.000
100.000
100.000
100.000 | ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg | 189789
189789
189789
189789
189789
189789 | | 09/19/06 1507
09/19/06 1507
09/19/06 1507
09/19/06 1507
09/19/06 1507
09/19/06 1507
09/19/06 1507 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 81.2 | | | 0.10
0.10 | 0.10 | 1 | o | 189010
189010 | | 09/11/06 1804
09/11/06 1804 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1265-4 Date Sampled....: 09/07/2006 Time Sampled....: 07:40 Sample Matrix...: Soil Laboratory Sample ID: 248554-2 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|--|----------------------------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | NID
NID
NID
NID
NID
NID | ם
ט
ט
ט
ט
ט | | 6.9
5.7
5.6
6.1
4.5
4.6
4.1 | 21
21
21
21
21
21
21
21 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg | 189789
189789
189789
189789
189789
189789 | | 09/19/06 0155
09/19/06 0155
09/19/06 0155
09/19/06 0155
09/19/06 0155
09/19/06 0155
09/19/06 0155 | bjt
bjt
bjt
bjt
bjt | | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | 4500 | | | 210 | 520 | 100.000 | mg/Kg | 189708 | | 09/21/06 1729 | san | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 78.6
21.4 | | | 0.10
0.10 | 0.10
0.10 | 1 | or or | 189010
189010 | | 09/11/06 1811
09/11/06 1811 | 1 1 | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1275-4 Date Sampled....: 09/07/2006 Time Sampled....: 08:00 Sample Matrix....: Soil Laboratory Sample ID: 248554-3 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------
--|----------------------------------|-------------|-------|--|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | ם ט ט ט ט ט | | 6.7
5.5
5.4
5.9
4.3
4.4 | 20
20
20
20
20
20
20
20
20 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg | 189789
189789
189789
189789
189789
189789 | | 09/19/06 0245
09/19/06 0245
09/19/06 0245
09/19/06 0245
09/19/06 0245
09/19/06 0245
09/19/06 0245 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 80.2
19.8 | | | 0.10
0.10 | 0.10 | 1 | 0° 0° | 189010
189010 | | 09/11/06 1815
09/11/06 1815 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1285-1 Date Sampled....: 09/07/2006 Time Sampled....: 09:20 Sample Matrix...: Soil Laboratory Sample ID: 248554-4 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|-------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | מממממ | | 6.7
5.5
5.4
5.9
4.3
4.4
3.9 | 20
20
20
20
20
20
20
20
20 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 0309
09/19/06 0309
09/19/06 0309
09/19/06 0309
09/19/06 0309
09/19/06 0309
09/19/06 0309 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 82.6
17.4 | | | 0.10
0.10 | 0.10
0.10 | 1 | ତ ତ
ତ | 189010
189010 | | 09/11/06 1818
09/11/06 1818 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1295-1 Date Sampled....: 09/07/2006 Time Sampled....: 09:40 Sample Matrix...: Soil Laboratory Sample ID: 248554-5 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|--|-------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | NID
NID
NID
NID
NID
NID | U U U | | 6.6
5.4
5.3
5.7
4.2
4.3
3.9 | 20
20
20
20
20
20
20
20
20 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 0359
09/19/06 0359
09/19/06 0359
09/19/06 0359
09/19/06 0359
09/19/06 0359
09/19/06 0359 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 82.5
17.5 | | | 0.10
0.10 | 0.10 | 1 | o o o o o o o o o o o o o o o o o o o | 189010
189010 | | 09/11/06 1822
09/11/06 1822 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1305-1 Date Sampled....: 09/07/2006 Time Sampled....: 10:50 Sample Matrix....: Soil Laboratory Sample ID: 248554-6 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|-------------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | 0
0
0 | | 6.3
5.2
5.1
5.5
4.1
4.2
3.7 | 19
19
19
19
19
19
19 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789 | | 09/19/06 0424
09/19/06 0424
09/19/06 0424
09/19/06 0424
09/19/06 0424
09/19/06 0424
09/19/06 0424 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 87.2
12.8 | | | 0.10
0.10 | 0.10 | 1 1 | oo oo | 189010
189010 | | 09/11/06 1826
09/11/06 1826 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1305-3 Date Sampled....: 09/07/2006 Time Sampled....: 11:00 Sample Matrix...: Soil Laboratory Sample ID: 248554-7 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|--|---------------------------------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | NID
NID
NID
NID
NID
NID | 0
0
0
0
0
0
0 | | 7.1
5.9
5.7
6.2
4.6
4.7
4.2 | 21
21
21
21
21
21
21
21 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 0603
09/19/06 0603
09/19/06 0603
09/19/06 0603
09/19/06 0603
09/19/06 0603
09/19/06 0603 |
bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 75.5
24.5 | | | 0.10
0.10 | 0.10 | 1 | o o o o o o o o o o o o o o o o o o o | 189010
189010 | | 09/11/06 1830
09/11/06 1830 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1315-1 Date Sampled....: 09/07/2006 Time Sampled....: 11:20 Sample Matrix...: Soil Laboratory Sample ID: 248554-8 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|---------------------------------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | ָ
ע
ע
ע
ע
ע
ע | | 5.7
4.6
4.5
4.9
3.6
3.7
3.3 | 17
17
17
17
17
17
17 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 0627
09/19/06 0627
09/19/06 0627
09/19/06 0627
09/19/06 0627
09/19/06 0627
09/19/06 0627 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 94.6 5.4 | | | 0.10
0.10 | 0.10 | 1 | o | 189010 | | 09/11/06 1833
09/11/06 1833 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1325-2 Date Sampled....: 09/07/2006 Time Sampled....: 13:20 Sample Matrix....: Soil Laboratory Sample ID: 248554-9 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | QI | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|------------------|-------|--|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | 0
0
0
0 | | 6.8
5.6
5.5
5.9
4.4
4.5 | 20
20
20
20
20
20
20
20
20 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 0831
09/19/06 0831
09/19/06 0831
09/19/06 0831
09/19/06 0831
09/19/06 0831
09/19/06 0831 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 80.1 | | | 0.10
0.10 | 0.10 | 1 | ate at | 189010
189010 | | 09/11/06 1837
09/11/06 1837 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1335-1 Date Sampled....: 09/07/2006 Time Sampled....: 15:15 Sample Matrix....: Soil Laboratory Sample ID: 248554-10 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|--|--------------------------------------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | NID
NID
NID
NID
NID
NID | ם
ח
ח
ח
ח
ח
ח
ח | | 6.6
5.4
5.3
5.8
4.2
4.3
3.9 | 20
20
20
20
20
20
20
20
20 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 0856
09/19/06 0856
09/19/06 0856
09/19/06 0856
09/19/06 0856
09/19/06 0856
09/19/06 0856 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 84.0 | | | 0.10
0.10 | 0.10
0.10 | 1 | ণ্ড o'e | 189010
189010 | | 09/11/06 1841
09/11/06 1841 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1335-4 Date Sampled....: 09/07/2006 Time Sampled....: 15:30 Sample Matrix...: Soil Laboratory Sample ID: 248554-11 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|----------------------------|-------|---|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | ם
ט
ט
ט
ט
ט | | 6.7
5.5
5.4
5.8
4.3
4.4
3.9 | 20
20
20
20
20
20
20
20
20 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789 | | 09/19/06 0945
09/19/06 0945
09/19/06 0945
09/19/06 0945
09/19/06 0945
09/19/06 0945
09/19/06 0945 | bjt
bjt
bjt
bjt
bjt | | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | 1000 | | | 20 | 50 | 10.0000 | mg/Kg | 189708 | | 09/21/06 1806 | san | | Method | % Solids Determination
% Solids, Solid
% Moisture, Solid | 80.1
19.9 | | | 0.10
0.10 | 0.10
0.10 | 1 | o o o o o o o o o o o o o o o o o o o | 189010
189010 | | 09/11/06 1844
09/11/06 1844 | 1 1 | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1345-1 Date Sampled....: 09/07/2006 Time Sampled....: 15:50 Sample Matrix....: Soil Laboratory Sample ID: 248554-12 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|---------------------------|-------|---|--
---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | ם
מממ
ממ
ממ
מ | | 6.5
5.3
5.2
5.6
4.1
4.3
3.8 | 19
19
19
19
19
19
19 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 189789
189789
189789
189789
189789
189789
189789 | | 09/19/06 1010
09/19/06 1010
09/19/06 1010
09/19/06 1010
09/19/06 1010
09/19/06 1010
09/19/06 1010 | bjt
bjt
bjt
bjt
bjt | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 84.7 | | | 0.10
0.10 | 0.10 | 1 | ે જે | 189010
189010 | | 09/11/06 1848
09/11/06 1848 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB1345-4 Date Sampled....: 09/07/2006 Time Sampled....: 16:10 Sample Matrix...: Soil Laboratory Sample ID: 248554-13 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|------------------|-------|----------------------------------|--|---|---|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | 0
0
0
0 | | 20
17
16
18
13
13 | 61
61
61
61
61
61
61 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg
ug/Kg | 189789
189789
189789
189789
189789
189789 | | 09/19/06 1035
09/19/06 1035
09/19/06 1035
09/19/06 1035
09/19/06 1035
09/19/06 1035
09/19/06 1035 | bjt
bjt
bjt
bjt
bjt | | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | 8.6 | | | 2.0 | 5.0 | 1.00000 | mg/Kg | 189708 | | 09/15/06 2159 | san | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 80.3
19.7 | | | 0.10
0.10 | 0.10
0.10 | 1 | ato ato | 189010 | | 09/11/06 1852
09/11/06 1852 | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB112 Date Sampled....: 09/07/2006 Time Sampled....: 16:20 Sample Matrix....: Water Laboratory Sample ID: 248554-14 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | QFLA | GS MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|--|----------------------------|--|--|--|--|--|----|--|---| | 8082 | PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | NID
NID
NID
NID
NID
NID | U
U
U
U
U
U | 0.17
0.39
0.33
0.40
0.45
0.33
0.16 | 0.47
0.47
0.47
0.47
0.47
0.47
0.47 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 189788
189788
189788
189788
189788
189788 | | 09/22/06 1352
09/22/06 1352
09/22/06 1352
09/22/06 1352
09/22/06 1352
09/22/06 1352 | 2 bjt
2 bjt
2 bjt
2 bjt
2 bjt | | | | | | | | | | | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248554 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB118 Date Sampled....: 09/07/2006 Time Sampled....: 16:40 Sample Matrix...: Water Laboratory Sample ID: 248554-15 Date Received.....: 09/08/2006 Time Received.....: 09:50 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT Ç | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|-----------------|-------|-------|------|----------|-------|--------|----|---------------|------| | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO) | 4.4 | | 0.031 | 0.12 | 1.00000 | mg/L | 189709 | | 09/15/06 2348 | san | | 8015B MGRO | TPH - Gasoline Range Organics (GRO)
Gasoline Range Organics (GRO) | 390 | | 6.9 | 50 | 1.00000 | ug/L | 189321 | | 09/15/06 2235 | wre |
 | | | | | | | | | | | | | | | | | | | ^{*} In Description = Dry Wgt. #### REFERENCES AND NOTES Report Date: 09/25/2006 #### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - U Analyte was not detected at or above the stated limit. - < Not detected at or above the reporting limit. - J Result is less than the RL, but greater than or equal to the method detection limit. - B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - S Result was determined by the Method of Standard Additions. - F AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) - ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits. - * LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - + MSA correlation coefficient is less than 0.995. - 4 MS, MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - N MS, MSD: Spike recovery exceeds the upper or lower control limits. - W AS(GFAA) Post-digestion spike was outside 85-115% control limits. Organic Qualifiers (Q - Column) - U Analyte was not detected at or above the stated limit. - ND Compound not detected. - J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Q Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - Y The chromatographic response resembles a typical fuel pattern. - The chromatographic response does not resemble a typical fuel pattern. - ${\tt E}$ Result exceeded calibration range, secondary dilution required. - F AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - B MB: Batch QC is greater than reporting limit. - * ICS, ICD, EIC, EID, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - ^ EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for - analysis; also compounds
analyzed at a dilution will be flagged with a D. - H Alternate peak selection upon analytical review - I Indicates the presence of an interfence, recovery is not calculated. - M Manually integrated compound. - P The lower of the two values is reported when the % difference between the results of two GC columns is #### REFERENCES AND NOTES Report Date: 09/25/2006 ``` greater than 25%. Abbreviations Post Digestion Spike (GFAA Samples - See Note 1 below) AS Designation given to identify a specific extraction, digestion, preparation set, or analysis set Batch CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification CF Confirmation analysis of original C1 Confirmation analysis of Al or D1 C2 Confirmation analysis of A2 or D2 C3 Confirmation analysis of A3 or D3 CRA Low Level Standard Check - GFAA; Mercury CRI Low Level Standard Check - ICP Calilbration Verification Standard CV Dil Fac Dilution Factor - Secondary dilution analysis D1 Dilution 1 D2 Dilution 2 D3 Dilution 3 Detection Limit Factor DLFac DSH Distilled Standard - High Level Distilled Standard - Low Level Distilled Standard - Medium Level DST. DSM EB1 Extraction Blank 1 Extraction Blank 2 EB2 EB3 DI Blank ELC. Method Extracted ICS ET D Method Extracted LCD ICAL Initial calibration ICB Initial Calibration Blank Initial Calibration Verification ICV IDL Instrument Detection Limit ISA Interference Check Sample A - ICAP Interference Check Sample B - ICAP ISB The first six digits of the sample ID which refers to a specific client, project and sample group Job No. Lab ID An 8 number unique laboratory identification LCD Laboratory Control Standard Duplicate LCS Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest MB Method Blank or (PB) Preparation Blank MD Method Duplicate MDL Method Detection Limit MLE Medium Level Extraction Blank MRL Method Reporting Limit Standard Method of Standard Additions MSA MS Matrix Spike MSD Matrix Spike Duplicate ND Not Detected Preparation factor used by the Laboratory's Information Management System (LIMS) PREPF Post Digestion Spike (ICAP) PDS RA Re-analysis of original A1 Re-analysis of D1 Α2 Re-analysis of D2 A3 Re-analysis of D3 RD Re-extraction of dilution RE Re-extraction of original RC. Re-extraction Confirmation RL Reporting Limit Relative Percent Difference of duplicate (unrounded) analyses RPD Relative Response Factor RRF RT Retention Time ``` ## REFERENCES AND NOTES Report Date: 09/25/2006 | RTW | Retention Time Window Sample ID A 9 digit number unique for each sample, the first | |----------|--| | KIW | six digits are referred as the job number | | SCB | Seeded Control Blank | | SD | Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) | | | <u> </u> | | UCB | Unseeded Control Blank | | SSV | Second Source Verification Standard | | SLCS | Solid Laboratory Control Standard(LCS) | | PHC | pH Calibration Check LCSP pH Laboratory Control Sample | | LCDP | pH Laboratory Control Sample Duplicate | | MDPH | pH Sample Duplicate | | MDFP | Flashpoint Sample Duplicate | | LCFP | Flashpoint LCS | | G1 | Gelex Check Standard Range 0-1 | | G2 | Gelex Check Standard Range 1-10 | | G3 | Gelex Check Standard Range 10-100 | | G4 | Gelex Check Standard Range 100-1000 | | Note 1: | The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current | | abbrevia | ution used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) | | _ | | Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/- the RL. # SEVERN TRENT LABORATORIES ANALYTICAL REPORT JOB NUMBER: 248582 Prepared For: SCS Engineers, Inc. 10975 El Monte Suite 100 Overland Park, KS 66211 Project: GSA - SLOP Attention: David Brewer Date: 09/25/2006 Signature Date Name: Richard C. Wright Title: Project Manager E-Mail: rwright@stl-inc.com STL Chicago 2417 Bond Street University Park, IL 60466 PHONE: (708) 534-5200 FAX..: (708) 534-5211 This Report Contains (_____) Pages ## SAMPLE INFORMATION Date: 09/25/2006 Job Number:248582Project Number:20006654Customer...:SCS Engineers, Inc.Customer Project ID...:GSA - SLOPAttn.....:David BrewerProject Description...:GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 248582-1 | SB109 | Water | 09/07/2006 | 16:40 | 09/09/2006 | 09:25 | | 248582-2 | SB116 | Water | 09/07/2006 | 16:50 | 09/09/2006 | 09:25 | | 248582-3 | SB130 | Water | 09/08/2006 | 06:45 | 09/09/2006 | 09:25 | | 248582-4 | SB121 | Water | 09/08/2006 | 07:15 | 09/09/2006 | 09:25 | | 248582-5 | SB119 | Water | 09/08/2006 | 07:30 | 09/09/2006 | 09:25 | | 248582-6 | SB122 | Water | 09/08/2006 | 07:45 | 09/09/2006 | 09:25 | LABORATORY TEST RESULTS Job Number: 248582 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB109 Date Sampled....: 09/07/2006 Time Sampled....: 16:40 Sample Matrix...: Water Laboratory Sample ID: 248582-1 Date Received.....: 09/09/2006 Time Received.....: 09:25 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|-------------------------------------|-----------------------|-------|--|--|--|--------------------------------------|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | NID NID NID NID NID NID NID NID NID | U
U
U
U
U | | 0.18
0.42
0.35
0.43
0.48
0.35
0.17 | 0.50
0.50
0.50
0.50
0.50
0.50 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L | 189788
189788
189788
189788
189788
189788 | | 09/22/06 1416
09/22/06 1416
09/22/06 1416
09/22/06 1416
09/22/06 1416
09/22/06 1416
09/22/06 1416 | bjt
bjt
bjt
bjt
bjt | | | | | | | | | | | | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248582 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB116 Date Sampled....: 09/07/2006 Time Sampled....: 16:50 Sample Matrix...: Water Laboratory Sample ID: 248582-2 Date Received.....: 09/09/2006 Time Received.....: 09:25 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|---------------|---|-------|-------|------|----------------|-------|----------------|-----------|---------------|------| | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO) | 0.093 | J | a | 0.031 | 0.12 | 1.00000 | mg/L | 189640 | | 09/13/06 1809 | san | | 8015B MGRO | TPH - Gasoline Range Organics (GRO) Gasoline Range Organics (GRO) | ND | U | | 6.9 | 50 | 1.00000 | ug/L | 189321 | | 09/15/06 2015 | wre | | | | | | | | | | |

 |

 |

 |

 | |

 |

 | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248582 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB130 Date Sampled....: 09/08/2006 Time Sampled....: 06:45 Sample Matrix...: Water Laboratory Sample ID: 248582-3 Date Received.....: 09/09/2006 Time Received.....: 09:25 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|----------------------------------|-----------------|-------|--|--|--|--|--|----|---|---------------------------------| | 8082 | PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | ND
ND
ND
ND
ND
ND | טטטטטטטטטטטטטטט | | 0.17
0.40
0.33
0.41
0.45
0.33
0.16 | 0.47
0.47
0.47
0.47
0.47
0.47
0.47 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L |
189788
189788
189788
189788
189788
189788 | | 09/22/06 1441
09/22/06 1441
09/22/06 1441
09/22/06 1441
09/22/06 1441
09/22/06 1441
09/22/06 1441 | bjt
bjt
bjt
bjt
bjt | | | | | | | | | | | | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248582 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB121 Date Sampled....: 09/08/2006 Time Sampled....: 07:15 Sample Matrix...: Water Laboratory Sample ID: 248582-4 Date Received.....: 09/09/2006 Time Received.....: 09:25 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | QI | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|---------------|----|-------|-----|-----|----------|-------|-----------|----|---------------|------| | 8015B MGRO | TPH - Gasoline Range Organics (GRO) Gasoline Range Organics (GRO) | 390 | | | 34 | 250 | 5.00000 | ug/L | 189321 | | 09/15/06 2050 | wre |

 | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248582 Date:09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB119 Date Sampled....: 09/08/2006 Time Sampled....: 07:30 Sample Matrix...: Water Laboratory Sample ID: 248582-5 Date Received.....: 09/09/2006 Time Received.....: 09:25 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|---------------|-------------|-------|-----|-----|----------|-------|----------------|----|---------------|------| | 8015B MGRO | TPH - Gasoline Range Organics (GRO)
Gasoline Range Organics (GRO) | 1900 | | | 14 | 100 | 2.00000 | ug/L | 189321 | | 09/15/06 2125 | wre | | | | | | | | | | |

 | | | | | | | | | | | | | |

 | | | | | | | | | | | | | |

 | | | | | | | | | | | | | |

 | | | | | | | | | | | | | |

 |

 | | | | | | | |

 | | | | | |

 | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248582 Date: 09/25/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB122 Date Sampled....: 09/08/2006 Time Sampled....: 07:45 Sample Matrix...: Water Laboratory Sample ID: 248582-6 Date Received.....: 09/09/2006 Time Received.....: 09:25 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|---------------|---|-------|-----|----|----------|-------|-----------|----|---------------|------| | 8015B MGRO | TPH - Gasoline Range Organics (GRO)
Gasoline Range Organics (GRO) | 20 | J | a | 6.9 | 50 | 1.00000 | ug/L | 189321 | | 09/15/06 2200 | wre |

 | ^{*} In Description = Dry Wgt. #### REFERENCES AND NOTES Report Date: 09/25/2006 #### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - U Analyte was not detected at or above the stated limit. - < Not detected at or above the reporting limit. - J Result is less than the RL, but greater than or equal to the method detection limit. - B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - S Result was determined by the Method of Standard Additions. - F AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) - ^ ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits. - * LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - + MSA correlation coefficient is less than 0.995. - 4 MS, MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - N MS, MSD: Spike recovery exceeds the upper or lower control limits. - W AS(GFAA) Post-digestion spike was outside 85-115% control limits. Organic Qualifiers (Q - Column) - U Analyte was not detected at or above the stated limit. - ND Compound not detected. - J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Q Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - Y The chromatographic response resembles a typical fuel pattern. - The chromatographic response does not resemble a typical fuel pattern. - ${\tt E}$ Result exceeded calibration range, secondary dilution required. - F AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - B MB: Batch QC is greater than reporting limit. - * LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - ^ EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - H Alternate peak selection upon analytical review - I Indicates the presence of an interfence, recovery is not calculated. - M Manually integrated compound. - P The lower of the two values is reported when the % difference between the results of two GC columns is #### REFERENCES AND NOTES Report Date: 09/25/2006 ``` greater than 25%. Abbreviations Post Digestion Spike (GFAA Samples - See Note 1 below) AS Designation given to identify a specific extraction, digestion, preparation set, or analysis set Batch CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification CF Confirmation analysis of original C1 Confirmation analysis of Al or D1 C2 Confirmation analysis of A2 or D2 C3 Confirmation analysis of A3 or D3 CRA Low Level Standard Check - GFAA; Mercury CRI Low Level Standard Check - ICP Calilbration Verification Standard CV Dil Fac Dilution Factor - Secondary dilution analysis D1 Dilution 1 D2 Dilution 2 D3 Dilution 3 Detection Limit Factor DLFac DSH Distilled Standard - High Level Distilled Standard - Low Level Distilled Standard - Medium Level DST. DSM EB1 Extraction Blank 1 Extraction Blank 2 EB2 EB3 DI Blank ELC. Method Extracted LCS ET D Method Extracted LCD ICAL Initial calibration ICB Initial Calibration Blank Initial Calibration Verification ICV IDL Instrument Detection Limit ISA Interference Check Sample A - ICAP Interference Check Sample B - ICAP ISB The first six digits of the sample ID which refers to a specific client, project and sample group Job No. Lab ID An 8 number unique laboratory identification LCD Laboratory Control Standard Duplicate LCS Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest MB Method Blank or (PB) Preparation Blank MD Method Duplicate MDL Method Detection Limit MLE Medium Level Extraction Blank MRL Method Reporting Limit Standard Method of Standard Additions MSA MS Matrix Spike MSD Matrix Spike Duplicate ND Not Detected Preparation factor used by the Laboratory's Information Management System (LIMS) PREPF Post Digestion Spike (ICAP) PDS RA Re-analysis of original A1 Re-analysis of D1 Α2 Re-analysis of D2 A3 Re-analysis of D3 RD Re-extraction of dilution RE Re-extraction of original RC. Re-extraction Confirmation RL Reporting Limit Relative Percent Difference of duplicate (unrounded) analyses RPD Relative Response Factor RRF RT Retention Time ``` ## REFERENCES AND NOTES Report Date: 09/25/2006 | RTW | Retention Time Window Sample ID A 9 digit number unique for each sample, the first | |----------|--| | ICIW | six digits are referred as the job number | | SCB | Seeded Control Blank | | SD | Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) | | UCB | Unseeded Control Blank | | SSV | Second Source
Verification Standard | | SLCS | Solid Laboratory Control Standard(LCS) | | PHC | pH Calibration Check LCSP pH Laboratory Control Sample | | LCDP | pH Laboratory Control Sample Duplicate | | MDPH | pH Sample Duplicate | | MDFP | Flashpoint Sample Duplicate | | LCFP | Flashpoint LCS | | G1 | Gelex Check Standard Range 0-1 | | G2 | Gelex Check Standard Range 1–10 | | G3 | Gelex Check Standard Range 10-100 | | G4 | Gelex Check Standard Range 100-1000 | | | The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current | | abbrevia | ation used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) | Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/- the RL. # SEVERN TRENT LABORATORIES ANALYTICAL REPORT JOB NUMBER: 248821 Prepared For: SCS Engineers, Inc. 10975 El Monte Suite 100 Overland Park, KS 66211 Project: GSA - SLOP Attention: David Brewer Date: 10/06/2006 Signature Date Name: Richard C. Wright Title: Project Manager E-Mail: rwright@stl-inc.com STL Chicago 2417 Bond Street University Park, IL 60466 PHONE: (708) 534-5200 FAX..: (708) 534-5211 This Report Contains (_____) Pages ## SAMPLE INFORMATION Date: 10/06/2006 Job Number:248821Project Number:20006654Customer...:SCS Engineers, Inc.Customer Project ID...:GSA - SLOPAttn.....:David BrewerProject Description...:GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 248821-1 | SB132 | Water | 09/21/2006 | 13:00 | 09/23/2006 | 09:20 | | 248821-2 | SB126 | Water | 09/21/2006 | 13:30 | 09/23/2006 | 09:20 | | 248821-3 | SB127 | Water | 09/21/2006 | 13:45 | 09/23/2006 | 09:20 | | 248821-4 | SB129 | Water | 09/21/2006 | 14:10 | 09/23/2006 | 09:20 | | 248821-5 | SB110 | Water | 09/21/2006 | 14:25 | 09/23/2006 | 09:20 | | 248821-6 | SB133 | Water | 09/21/2006 | 14:35 | 09/23/2006 | 09:20 | | 248821-7 | SB134 | Water | 09/21/2006 | 14:45 | 09/23/2006 | 09:20 | | 248821-8 | SB122 | Water | 09/21/2006 | 15:00 | 09/23/2006 | 09:20 | | 248821-9 | SB119 | Water | 09/21/2006 | 15:15 | 09/23/2006 | 09:20 | | 248821-10 | SB121 | Water | 09/21/2006 | 15:30 | 09/23/2006 | 09:20 | | 248821-11 | 108BLSSS1 | Soil | 09/22/2006 | 10:00 | 09/23/2006 | 09:20 | LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB132 Date Sampled....: 09/21/2006 Time Sampled....: 13:00 Sample Matrix....: Water Laboratory Sample ID: 248821-1 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|----------------------------------|---------------------|-------|--|--|--|--|--|----|---|----------------------| | 8082 | PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | ND
ND
ND
ND
ND
ND | טטטטטטטטטטטטטטטטטטט | | 0.19
0.44
0.37
0.45
0.51
0.37
0.18 | 0.53
0.53
0.53
0.53
0.53
0.53
0.53 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 190238
190238
190238
190238
190238
190238 | | 09/28/06 0528
09/28/06 0528
09/28/06 0528
09/28/06 0528
09/28/06 0528
09/28/06 0528
09/28/06 0528 | lm
lm
lm
lm | | | | | | | | | | | | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB126 Date Sampled....: 09/21/2006 Time Sampled....: 13:30 Sample Matrix....: Water Laboratory Sample ID: 248821-2 Date Received.....: 09/23/2006 Time Received.....: 09:20 Q FLAGS DILUTION TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT MDT. RLUNITS BATCH DT DATE/TIME TECH 8082 PCB Analysis Aroclor 1016 ND 1.00000 190238 09/28/06 0558 lm 0.19 0.53 ug/L Aroclor 1221 ND ug/L 09/28/06 0558 lm 0.44 0.53 1.00000 190238 Aroclor 1232 ND 09/28/06 0558 lm 0.37 0.53 1.00000 ug/L 190238 ND 09/28/06 0558 lm Aroclor 1242 0.45 0.53 1.00000 190238 ug/L ND Aroclor 1248 190238 09/28/06 0558 lm 0.51 0.53 1.00000 ug/L Aroclor 1254 ND 0.37 0.53 1.00000 ug/L 190238 09/28/06 0558 lm 09/28/06 0558 lm Aroclor 1260 2.6 0.18 1.00000 190238 0.53 ug/L ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB127 Date Sampled....: 09/21/2006 Time Sampled....: 13:45 Sample Matrix....: Water Laboratory Sample ID: 248821-3 Date Received.....: 09/23/2006 Time Received.....: 09:20 | Aroclor 1221 Aroclor 1232 ND U 0.44 0.53 1.00000 ug/L 190238 0.37 0.53 | | | Q FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |---|---|---------------------------------|------------------|--|--|--|--|--|----|---|----------------------------| | | Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 | NID
NID
NID
NID
NID | U
U
U
U | 0.19
0.44
0.37
0.45
0.51
0.37 | 0.53
0.53
0.53
0.53
0.53
0.53 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 190238
190238
190238
190238
190238
190238 | | 09/28/06 0628
09/28/06 0628
09/28/06 0628
09/28/06 0628
09/28/06 0628
09/28/06 0628
09/28/06 0628 | lm
lm
lm
lm
lm | ^{*} In Description = Dry Wgt. Job Number: 248821 LABORATORY TEST RESULTS CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB129 Date Sampled....: 09/21/2006 Time Sampled....: 14:10 Sample Matrix....: Water Laboratory Sample ID: 248821-4 Date Received.....: 09/23/2006 Time Received.....: 09:20 Date:10/06/2006 Q FLAGS DILUTION TEST METHOD PARAMETER/TEST DESCRIPTION SAMPLE RESULT MDT. RLUNITS BATCH DT DATE/TIME TECH 8082 PCB Analysis Aroclor 1016 ND 1.00000 190238 09/28/06 0658 lm 0.19 0.53 ug/L Aroclor 1221 ND ug/L 09/28/06 0658 lm 0.44 0.53 1.00000 190238 Aroclor 1232 ND 09/28/06 0658 lm 0.37 0.53 1.00000 ug/L 190238 ND 09/28/06 0658 lm Aroclor 1242 0.45 0.53 1.00000 190238 ug/L ND Aroclor 1248 190238 09/28/06 0658 lm 0.51 0.53 1.00000 ug/L Aroclor 1254 ND 0.37 0.53 1.00000 ug/L 190238 09/28/06 0658 lm ND 09/28/06 0658 lm Aroclor 1260 0.18 1.00000 190238 0.53 ug/L ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB110 Date Sampled....: 09/21/2006 Time Sampled....: 14:25 Sample Matrix....: Water Laboratory Sample ID: 248821-5 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | QFLAG | SS MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|-------------------|---------------------------------------|--|--|--|--|--|----|---|----------------------------| | 8082 | PARAMETER/TEST DESCRIPTION PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | ND ND ND ND ND ND | U U U U U U U U U U U U U U U U U U U | 1.0
2.3
1.9
2.4
2.7
1.9
0.94 | 2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 190238
190238
190238
190238
190238
190238 | | 09/28/06 0729
09/28/06 0729
09/28/06 0729
09/28/06 0729
09/28/06 0729
09/28/06 0729
09/28/06 0729 | lm
lm
lm
lm
lm | | | | | | | | | | | | | | ^{*} In
Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB133 Date Sampled....: 09/21/2006 Time Sampled....: 14:35 Laboratory Sample ID: 248821-6 Date Received....: 09/23/2006 Time Received....: 09:20 Sample Matrix....: Water | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TEC | |-------------|---|----------------------------------|------------------|--|--|--|--|--|----|---|----------------------------| | 8082 | PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | ND
ND
ND
ND
ND
ND | บ
บ
บ
บ | 0.19
0.44
0.37
0.45
0.51
0.37
0.18 | 0.53
0.53
0.53
0.53
0.53
0.53
0.53 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | ug/L
ug/L
ug/L
ug/L
ug/L
ug/L | 190238
190238
190238
190238
190238
190238
190238 | | 09/28/06 0829
09/28/06 0829
09/28/06 0829
09/28/06 0829
09/28/06 0829
09/28/06 0829
09/28/06 0829 | lm
lm
lm
lm
lm | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: SB134 Date Sampled....: 09/21/2006 Time Sampled....: 14:45 Sample Matrix....: Water Laboratory Sample ID: 248821-7 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|---|-------------------------------------|-------------------------------|-------|--|--|--|---|--|----|--|----------------------------| | 8082 | PARAMETER/TEST DESCRIPTION PCB Analysis Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 | SAMPLE RESULT ND ND ND ND ND ND ND | ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט | FLAGS | 0.23
0.54
0.45
0.55
0.62
0.45
0.22 | 0.64
0.64
0.64
0.64
0.64
0.64
0.64 | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | UNITS ug/L ug/L ug/L ug/L ug/L ug/L ug/L | 190238
190238
190238
190238
190238
190238 | | DATE/TIME 09/28/06 0859 09/28/06 0859 09/28/06 0859 09/28/06 0859 09/28/06 0859 09/28/06 0859 09/28/06 0859 | lm
lm
lm
lm
lm | | | | | | | | | | | | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB122 Date Sampled....: 09/21/2006 Time Sampled....: 15:00 Sample Matrix....: Water Laboratory Sample ID: 248821-8 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|---------------|---|-------|-------|------|----------|-------|----------------|----|---------------|------| | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO) | 0.26 | | | 0.036 | 0.13 | 1.00000 | mg/L | 190462 | | 10/03/06 0419 | san |

 | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB119 Date Sampled....: 09/21/2006 Time Sampled....: 15:15 Sample Matrix...: Water Laboratory Sample ID: 248821-9 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECE | |-------------|--|---------------|---|-------|-------|------|----------|-------|-----------|----|---------------|------| | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO) | 0.99 | | | 0.036 | 0.13 | 1.00000 | mg/L | 190462 | | 10/03/06 0456 | san |
 |

 | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB121 Date Sampled....: 09/21/2006 Time Sampled....: 15:30 Sample Matrix....: Water Laboratory Sample ID: 248821-10 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|---------------|--------------|-------|-------|------|----------|-------|----------------|----|---------------|------| | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO) | 0.10 | J | a | 0.033 | 0.13 | 1.00000 | mg/L | 190462 | | 10/03/06 0532 | san |

 | | | | | | | | | | | | | |

 | | | | | | | | | | | | | |

 |

 | | | | | |

 | | | | ^{*} In Description = Dry Wgt. LABORATORY TEST RESULTS Job Number: 248821 Date:10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Customer Sample ID: 108BLSSS1 Date Sampled....: 09/22/2006 Time Sampled....: 10:00 Sample Matrix....: Soil Laboratory Sample ID: 248821-11 Date Received.....: 09/23/2006 Time Received.....: 09:20 | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | QI | FLAGS | MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |-------------|--|----------------------------------|------------------|-----------|--|---|---|---|--|----|---|----------------------------| | 8082 | PCB Analysis Aroclor 1016, 3541 Solid* Aroclor 1221, 3541 Solid* Aroclor 1232, 3541 Solid* Aroclor 1242, 3541 Solid* Aroclor 1248, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1254, 3541 Solid* Aroclor 1260, 3541 Solid* | ND
ND
ND
ND
ND
ND | U
U
U
U | | 72
59
58
63
46
48
42 | 210
210
210
210
210
210
210
210
210 | 10.0000
10.0000
10.0000
10.0000
10.0000
10.0000
10.0000 | ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg | 190206
190206
190206
190206
190206
190206
190206 | | 09/28/06 0633
09/28/06 0633
09/28/06 0633
09/28/06 0633
09/28/06 0633
09/28/06 0633
09/28/06 0633 | lm
lm
lm
lm
lm | | 8015B MDRO | TPH - Diesel Range Organics (DRO)
Diesel Range Organics (DRO), 3541 Solid* | 6400 | |

 | 220 | 540 | 100.000 | mg/Kg |

 190461 | | 10/03/06 0003 | san | | Method | % Solids Determination % Solids, Solid % Moisture, Solid | 73.3
26.7 | | | 0.10
0.10 | 0.10
0.10 | 1 | ato ato | 189989
189989 | | 09/27/06 0000
09/27/06 0000 | | ^{*} In Description = Dry Wgt. ## LABORATORY CHRONICLE Job Number: 248821 Date: 10/06/2006 | UOL | Number · 240021 | | Dat | e. 10/00/2000 | | |----------------------------|---|----------------|-------------------------|--|-----------| | CUSTOMER: SCS Eng | gineers, Inc. | PROJECT: GSA - | SLOP | ATTN: David Brewer | | | Lab ID: 248821-1 | Client ID: SB132 | Date Re | ecvd: 09/23/2006 Sam | ple Date: 09/21/2006 | | | METHOD | DESCRIPTION | | BATCH# PREP BT #(S) | DATE/TIME ANALYZED | DILUTION | | EDD | Electronic Data Deliverable | 1 | 4.0004 | | | | 3510C | Extraction Sep. Funnel (PCBs) | 1 | 189991 | 09/27/2006 1300 | 1 00000 | | 8082 | PCB Analysis | 1 | 190238 189991
| 09/28/2006 0528 | 1.00000 | | Lab ID: 248821-2 | Client ID: SB126 | Date Re | ecvd: 09/23/2006 Sam | ple Date: 09/21/2006 | | | METHOD | DESCRIPTION | RUN# | | DATE/TIME ANALYZED | DILUTION | | 3510C | Extraction Sep. Funnel (PCBs) | | 189991 | 09/27/2006 1300 | | | 8082 | PCB Analysis | 1 | 190238 189991 | 09/28/2006 0558 | 1.00000 | | Lab ID: 248821-3 | Client ID: SB127 | Date Re | ecvd: 09/23/2006 Sam | mle Date: 09/21/2006 | | | METHOD | DECCETOTION | DI TAT# | BATCH# PREP BT #(S) | DATE/TIME ANALYZED | DILUTION | | 3510C | Extraction Sep. Funnel (PCBs) | 1 | 189991 | 09/27/2006 1300 | | | 8082 | PCB Analysis | 1 | 190238 189991 | 09/28/2006 0628 | 1.00000 | | Lab ID: 248821-4 | Client ID: SB129 | Date Do | ecvd: 09/23/2006 Sam | mle Date: 09/21/2006 | | | METHOD | DESCRIPTION | | | DATE/TIME ANALYZED | DILUTION | | 3510C | Extraction Sep. Funnel (PCBs) | 1 | 189991 | 09/27/2006 1300 | 21201101 | | 8082 | PCB Analysis | 1 | 190238 189991 | 09/28/2006 0658 | 1.00000 | | I-b ID: 040001 F | Client ID: SB110 | D-+- D- | ecvd: 09/23/2006 Sam | ple Date: 09/21/2006 | | | Lab ID: 248821-5 | DESCRIPTION | | | DATE/TIME ANALYZED | DILUTION | | 3510C | Extraction Sep. Funnel (PCBs) | 1 | 189991 | 09/27/2006 1300 | DILICITON | | 8082 | PCB Analysis | 1 | 190238 189991 | 09/28/2006 0729 | 1.00000 | | - 1 040001 6 | e7.1 | | 1. 00 (00 (0006 - 0 | 3 - 7 - 1 - 00 (01 (000) | | | Lab ID: 248821-6
METHOD | Client ID: SB133 DESCRIPTION | | | ple Date: 09/21/2006
DATE/TIME ANALYZED | DILUTION | | 3510C | Extraction Sep. Funnel (PCBs) | 1 | 189991 | 09/27/2006 1300 | DILUTION | | 8082 | PCB Analysis | 1 | 190238 189991 | 09/28/2006 0829 | 1.00000 | | | | | | _ | | | Lab ID: 248821-7 | Client ID: SB134 DESCRIPTION | | ecvd: 09/23/2006 Sam | ple Date: 09/21/2006 DATE/TIME ANALYZED | DILLEGION | | METHOD
3510C | Extraction Sep. Funnel (PCBs) | RON#
1 | 189991 | 09/27/2006 1300 | DILUTION | | 8082 | PCB Analysis | 1 | 190238 189991 | 09/28/2006 0859 | 1.00000 | | | | | | | | | Lab ID: 248821-8 | Client ID: SB122 | Date Re | | ple Date: 09/21/2006 | | | METHOD | DESCRIPTION First reaction Con Firmel (Diagol) | RUN# | | DATE/TIME ANALYZED | DILUTION | | 3510C
8015B MDRO | DESCRIPTION Extraction Sep. Funnel (Diesel) TPH - Diesel Range Organics (DRO) | 1
1 | 190042
190462 190042 | 09/27/2006 1300
10/03/2006 0419 | 1.00000 | | OUISE TERO | III Diebei lange organies (Die) | - | 190102 190012 | 10, 03, 2000 0113 | 1.00000 | | Lab ID: 248821-9 | | | | ple Date: 09/21/2006 | | | METHOD | DESCRIPTION | RUN# | | DATE/TIME ANALYZED | DILUTION | | 3510C
8015B MDRO | Extraction Sep. Funnel (Diesel) TPH - Diesel Range Organics (DRO) | 1
1 | 190042
190462 190042 | 09/27/2006 1300
10/03/2006 0456 | 1.00000 | | ONTOR MINO | irn - Diesei Range Organics (DRO) | 1 | 190402 190042 | 10/03/2006 0456 | 1.00000 | | Lab ID: 248821-10 | Client ID: SB121 | Date Re | ecvd: 09/23/2006 Sam | ple Date: 09/21/2006 | | | METHOD | DESCRIPTION | RUN# | | | DILUTION | | 3510C | Extraction Sep. Funnel (Diesel) | 1 | 190042 | 09/27/2006 1300 | 1 00000 | | 8015B MDRO | TPH - Diesel Range Organics (DRO) | 1 | 190462 190042 | 10/03/2006 0532 | 1.00000 | | Lab ID: 248821-11 | Client ID: 108BLSSS1 | Date Re | ecvd: 09/23/2006 Sam | ple Date: 09/22/2006 | | | METHOD | DESCRIPTION | RUN# | BATCH# PREP BT #(S) | - | DILUTION | | Method | % Solids Determination | 1 | 189989 | 09/27/2006 0000 | | | 3541 | Extraction Soxhlet (DRO) | 1 | 190035 | 09/27/2006 1600 | | | 3541
8082 | Extraction Soxhlet (PCBs) PCB Analysis | 1
1 | 189929
190206 189929 | 09/26/2006 1630
09/28/2006 0633 | 10.0000 | | 0002 | LCD WINTABID | Τ. | エンUZUU エロブブZブ | 09/20/2000 0033 | 10.0000 | | | | | | | | LABORATORY CHRONICLE Job Number: 248821 Date: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Date Recvd: 09/23/2006 Sample Date: 09/22/2006 Lab ID: 248821-11 Client ID: 108BLSSS1 METHOD DESCRIPTION 8015B MDRO TPH - Diesel Range Organics (DRO) RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 190461 190035 10/03/2006 0003 100.000 Page 14 ## SURROGATE RECOVERIES REPORT Job Number.: 248821 Report Date.: 10/06/2006 | CUSTOMER: SCS Engineers, Inc. | PROJECT: GSA - SLOP | ATIN: Da | avid Brewer | |--|---------------------|----------------------|--------------------| | Method: TPH - Diesel Range O
Method Code: 8015D | <u> </u> | x: 3541 Solid | Prep Batch: 190035 | | Lab ID DT Sample ID | Date 2FLUE | BP OTERPH | | | CS MB 248821- 11 108BLSSS1 248821- 11 MS 108BLSSS1 248821- 11 MSD 108BLSSS1 108B | 10/03/2006 0 | | | | Method: TPH - Diesel Range O
Method Code: 8015D | <u> </u> | c: Water
: 190462 | Prep Batch: 190042 | | Lab ID DT Sample ID | Date 2FLUE | BP OTERPH | | | ICD | 10/03/2006 88 | 3 73 | | | Method Code: 8015D | | Batch(s): 190462 | | | | | |--------------------|----------|------------------|-----------|--------|--------|------| | Lab ID | DT | Sample ID | Date | 2FLUBP | OTERPH | | | LCD | | | 10/03/200 | 6 88 | 73 |
 | | LCS | | | 10/03/200 | 6 100 | 83 | | | MB | | | 10/03/200 | 6 75 | 74 | | | 248821- | 8 | SB122 | 10/03/200 | 16 79 | 78 | | | 248821- | 9 | SB119 | 10/03/200 | 6 82 | 78 | | | 248821- 1 | 10 | SB121 | 10/03/200 | 16 73 | 75 | | | Test | Test Des | scription | Limits | | | | | 2FLUBP | | obiphenyl (surr) | 34 - 139 | | | | | 2FLUBP | 2-Fluorobiphenyl (surr) | 34 - 139 | | |--------|-------------------------|----------|--| | OTERPH | o-Terphenyl (surr) | 50 - 127 | | SURROGATE RECOVERIES REPORT Report Date.: 10/06/2006 Job Number.: 248821 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Method....: PCB Analysis Test Matrix...: 3541 Solid Prep Batch..: 189929 Method Code...: 8082 Batch(s)....: 190206 Lab ID DT Sample ID Date DCB TCX LCS 94 51 09/28/2006 MΒ 09/28/2006 96 60 248821- 11 108BLSSS1 09/28/2006 103 87 Test Test Description Limits 70 - 125 DCB Decachlorobiphenyl (surr) 44 - 135 TCX Tetrachloro-m-xylene (surr) Test Matrix...: Water Method....: PCB Analysis Prep Batch..: 189991 Method Code...: 8082 Batch(s)....: 190238 Lab ID DT Sample ID Date DCB TCX LCD 09/27/2006 84 71 LCS 09/27/2006 70 MB 09/27/2006 92 65 248821- 1 SB132 09/28/2006 37 25 248821-2 SB126 09/28/2006 70 81 248821-3 SB127 09/28/2006 59 72 248821-SB129 09/28/2006 66 73 248821-5 SB110 09/28/2006 57 74 248821-09/28/2006 SB133 28 48 6 248821-SB134 09/28/2006 49 72 Test Test Description Limits 20 - 145 DCB Decachlorobiphenyl (surr) Job Number.: 248821 Report Date.: 10/06/2006 Reag. Code Date Time CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Lab ID Dilution Factor Analyst...: lm Equipment Code....: INST3132 Test Method.....: 8082 Method Description.: PCB Analysis Batch..... 190206 Description QC Type | LCS | Laboratory Control Samp | le | | O6IW | LPCBA | 189929-002 | | | 09/ | /28/: | 2006 | 0453 | |--------------|-------------------------|-------|---------|------|-----------|------------|-------------|-------|-----|-------|-------|------| | Para | meter/Test Description | Units | QC Resi | ult | QC Result | True Value | Orig. Value | QC Ca | lc. | * | Limit | ts F | | Aroclor 1016 | , 3541 Solid | ug/Kg | 130.1 | 173 | | 166.700 | 5.600 | U 78 | | % | 52-2 | 105 | | Aroclor 1260 | , 3541 Solid | ug/Kg | 153.4 | 467 | | 167.000 | 3.300 | U 92 | | 왕 | 63-1 | 122 | Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8082 Equipment Code...: INST3132 Analyst...: lm Method Description.: PCB Analysis Batch....: 190206 | MB Method Blank | | | | | 189929-001 | | | | 09/ | 28/2 | 2006 | 0429 | Ī | |----------------------------|-------|---------|------|-----------|------------|-------|-------|--------|-----|------|-------|------|---| | Parameter/Test Description | Units | QC Resu | lt | QC Result | True Value | Orig. | Value | QC Ca. | lc. | * | Limit
| ts | F | | Aroclor 1016, 3541 Solid | ug/Kg | 5.60 | 00 U | | | | | | | | | | • | | Aroclor 1221, 3541 Solid | ug/Kg | 4.60 | U 00 | | | | | | | | | | | | Aroclor 1232, 3541 Solid | ug/Kg | 4.50 | U 00 | | | | | | | | | | | | Aroclor 1242, 3541 Solid | ug/Kg | 4.90 | U 00 | | | | | | | | | | | | Aroclor 1248, 3541 Solid | ug/Kg | 3.60 | U 00 | | | | | | | | | | | | Aroclor 1254, 3541 Solid | ug/Kg | 3.70 | U 00 | | | | | | | | | | | | Aroclor 1260, 3541 Solid | ug/Kg | 3.30 | U 00 | | | | | | | | | | | Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP Dilution Factor Reag. Code Lab ID Description Date QC Type Time Analyst...: lm Equipment Code....: INST3738 Test Method.....: 8082 Method Description.: PCB Analysis Batch....: 190238 | LCD | Laboratory Control Samp | ple Duplicate | <u>;</u> | O6IW | TLPCBA | 189991-003 | | 09/27/ | ′2006 2 | 2138 | |--------------|-------------------------|---------------|----------|------|-----------|------------|--------------------|--------|-------------|------| | Para | meter/Test Description | Units | QC Resi | ılt | QC Result | True Value | Orig. Value QC Cal | .c. * | Limits | s F | | Aroclor 1016 | | ug/L | 4.4 | 120 | 4.291 | 5.001 | 0.180 U 88 | %
P | 66-10
20 | 06 | | Aroclor 1260 | | ug/L | 4.5 | 541 | 4.501 | 5.010 | 0.170 U 91
1 | 8 | 71-11
20 | 16 | Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP Dilution Factor Reag. Code Lab ID QC Type Description Date Time Analyst...: lm Equipment Code....: INST3738 Test Method.....: 8082 Method Description.: PCB Analysis Batch....: 190238 | LCS | | Laboratory Control Samp | le | | O6IW | VLPCBA | 189991-002 | | | 09/ | /27/: | 2006 | 2108 | |---------|-------|-------------------------|-------|---------|------|-----------|------------|-------------|-------|-----|-------|-------|------| | | Paran | neter/Test Description | Units | QC Resi | ult | QC Result | True Value | Orig. Value | QC Ca | lc. | * | Limit | s F | | Aroclor | 1016 | | ug/L | 4.2 | 291 | | 5.001 | 0.180 | U 86 | | ે | 66-1 | 06 | | Aroclor | 1260 | | ug/L | 4.5 | 501 | | 5.010 | 0.170 | U 90 | | % | 71-1 | .16 | Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP Dilution Factor Reag. Code Lab ID Description Date QC Type Time Analyst...: lm Equipment Code....: INST3738 Test Method.....: 8082 Method Description.: PCB Analysis Batch....: 190238 | MB Me | thod Blank | | | | | 189991-001 | | | | 09/27 | //2006 | 2038 | |------------------------------|---------------------|--------------|---------|-----------------|-----------|------------|-----|-----------|-------|-------|--------|-------| | Paramete | er/Test Description | Units | QC Resu | ılt | QC Result | True Value | Or: | ig. Value | QC Ca | Lc. * | Limi | lts I | | Aroclor 1016 | | ug/L | | .80 U | | | | | | | | | | Aroclor 1221
Aroclor 1232 | | ug/L
ug/L | | 120 U
1350 U | | | | | | | | | | Aroclor 1242
Aroclor 1248 | | ug/L
ug/L | | 130 U
180 U | | | | | | | | | | Aroclor 1254
Aroclor 1260 | | ug/L
ug/L | 0.3 | 350 U | | | | | | | | | Job Number: 248821 Report Date: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8015B MDRO Equipment Code...: INST10 Analyst...: san 59.578 Method Description: TPH - Diesel Range Organics (DRO) Batch....: 190461 ICS Laboratory Control Sample 006IWLDIEA 190035-002 10/02/2006 2326 Parameter/Test Description Units QC Result True Value Orig. Value QC Calc. * Limits Diesel Range Organics (DRO), 3541 Soli mg/Kg Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8015B MDRO Equipment Code...: INST10 Analyst...: san Method Description: TPH - Diesel Range Organics (DRO) Batch.....: 190461 MB Method Blank 190035-001 10/02/2006 2250 Parameter/Test Description Units QC Result QC Result True Value Orig. Value QC Calc. * Limits I Diesel Range Organics (DRO), 3541 Soli mg/Kg Job Number.: 248821 _____ Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8015B MDRO Equipment Code...: INST10 Analyst...: san Method Description: TPH - Diesel Range Organics (DRO) Batch....: 190461 | MS | Matrix Spike | | | 0061 | WLDIEA | 248821-11 | 100.000 | | 10/03 | 3/2006 | 0040 | i | |--------------|---------------------------|---------|---------|------|-----------|------------|-------------|--------|-------|--------|------|---| | Parar | meter/Test Description | Units | QC Resi | ult | QC Result | True Value | Orig. Value | QC Cal | .c. 7 | Lim | its | F | | Diesel Range | Organics (DRO), 3541 Soli | i mg/Kg | 10012. | 977 | | 8563.000 | 6423.002 | 0 | | £ 62· | -120 | D | Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8015B MDRO Equipment Code...: INST10 Analyst...: san Method Description.: TPH - Diesel Range Organics (DRO) Batch.....: 190461 | MSD | | Matrix Spike Duplicate | | | 0061 | WLDIEA | 248821-11 | 100.000 | | 10/0 | 3/2 | 2006 | 0116 | | |--------|---------|----------------------------|-------|---------|------|-----------|------------|-------------|---------|------|----------|------------|------|---| | | Parame | ter/Test Description | Units | QC Resi | ult | QC Result | True Value | Orig. Value | QC Ca | lc. | * | Limit | s : | F | | Diesel | Range O | rganics (DRO), 3541 Soli 1 | mg/Kg | 8754.5 | 548 | 10012.977 | 8562.000 | 6423.002 | 0
43 | | %
R 3 | 62-1
30 | 20 | D | Job Number.: 248821 _____ Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8015B MDRO Equipment Code...: INST10 Analyst...: san Method Description: TPH - Diesel Range Organics (DRO) Batch....: 190462 | | LCD | Laboratory Control Samp | ole Duplicate | | 006I | WLDIEA | 190042-003 | | | 10/ | 03/: | 2006 | 0306 | | |---|------------|--------------------------|---------------|---------|------|-----------|------------|-------------|--------|-----|------|-------|------|---| | - | Pa | rameter/Test Description | Units | QC Resi | ılt | QC Result | True Value | Orig. Value | QC Cal | Lc. | * | Limit | s | F | | - | Diesel Rar | ge Organics (DRO) | ma/L | 1.45 | 7030 | 1.633330 | 2.000000 | 0.033000 U | 73 | | % | 64-1 | .00 | | 11 R 20 Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP Lab ID Dilution Factor QC Type Description Reag. Code Date Time Test Method.....: 8015B MDRO Equipment Code....: INST10 Analyst...: san 1.633330 Method Description.: TPH - Diesel Range Organics (DRO) Batch....: 190462 mg/L Diesel Range Organics (DRO) LCS Laboratory Control Sample O06IWLDIEA 190042-002 10/03/2006 0229 Orig. Value QC Calc. * Limits Parameter/Test Description Units QC Result QC Result True Value % 64-100 0.033000 U 82 2.000000 QUALITY CONTROL RESULTS Report Date.: 10/06/2006 Job Number.: 248821 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP Dilution Factor Lab ID QC Type Description Reag. Code Date Time Test Method.....: 8015B MDRO Equipment Code....: INST10 Analyst...: san Method Description.: TPH - Diesel Range Organics (DRO) Batch....: 190462 MB Method Blank 190042-001 10/03/2006 0153 Parameter/Test Description Units QC Result QC Result True Value Orig. Value QC Calc. * Limits F Diesel Range Organics (DRO) mg/L 0.033000 U Job Number.: 248821 Report Date.: 10/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATIN: David Brewer Test Method.....: Method Batch....: 189989 Analyst...: gok Method Description: % Solids Determination Parameter...... % Solids Test Code.: %SOLID Equipment Code....: True Value Orig. Value QC Calc. F * Limits QC Lab ID Reagent Units QC Result QC Result Date Time 0.1000 U MB 189989-001 09/27/2006 0000 ### QUALITY ASSURANCE METHODS #### REFERENCES AND NOTES Report Date: 10/06/2006 #### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - U Analyte was not detected at or above the stated limit. - < Not detected at or above the reporting limit. - J Result is less than the RL, but greater than or equal to the method detection limit. - B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - S Result was determined by the Method of Standard Additions. - F AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) - ^ ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits. - * LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - + MSA correlation coefficient is less than 0.995. - 4 MS,
MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - N MS, MSD: Spike recovery exceeds the upper or lower control limits. - W AS(GFAA) Post-digestion spike was outside 85-115% control limits. Organic Qualifiers (Q - Column) - U Analyte was not detected at or above the stated limit. - ND Compound not detected. - J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Q Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - Y The chromatographic response resembles a typical fuel pattern. - The chromatographic response does not resemble a typical fuel pattern. - ${\tt E}$ Result exceeded calibration range, secondary dilution required. - F AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - B MB: Batch QC is greater than reporting limit. - * ICS, ICD, EIC, EID, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - ^ EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - H Alternate peak selection upon analytical review - I Indicates the presence of an interfence, recovery is not calculated. - M Manually integrated compound. - P The lower of the two values is reported when the % difference between the results of two GC columns is ### QUALITY ASSURANCE METHODS #### REFERENCES AND NOTES Report Date: 10/06/2006 ``` greater than 25%. Abbreviations Post Digestion Spike (GFAA Samples - See Note 1 below) AS Designation given to identify a specific extraction, digestion, preparation set, or analysis set Batch CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification CF Confirmation analysis of original C1 Confirmation analysis of Al or D1 C2 Confirmation analysis of A2 or D2 C3 Confirmation analysis of A3 or D3 CRA Low Level Standard Check - GFAA; Mercury CRI Low Level Standard Check - ICP Calilbration Verification Standard CV Dil Fac Dilution Factor - Secondary dilution analysis D1 Dilution 1 D2 Dilution 2 D3 Dilution 3 Detection Limit Factor DLFac DSH Distilled Standard - High Level Distilled Standard - Low Level Distilled Standard - Medium Level DST. DSM EB1 Extraction Blank 1 Extraction Blank 2 EB2 EB3 DI Blank ELC. Method Extracted LCS ET D Method Extracted LCD ICAL Initial calibration ICB Initial Calibration Blank Initial Calibration Verification ICV IDL Instrument Detection Limit ISA Interference Check Sample A - ICAP Interference Check Sample B - ICAP ISB The first six digits of the sample ID which refers to a specific client, project and sample group Job No. Lab ID An 8 number unique laboratory identification LCD Laboratory Control Standard Duplicate LCS Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest MB Method Blank or (PB) Preparation Blank MD Method Duplicate MDL Method Detection Limit MLE Medium Level Extraction Blank MRL Method Reporting Limit Standard Method of Standard Additions MSA MS Matrix Spike MSD Matrix Spike Duplicate ND Not Detected Preparation factor used by the Laboratory's Information Management System (LIMS) PREPF Post Digestion Spike (ICAP) PDS RA Re-analysis of original A1 Re-analysis of D1 Α2 Re-analysis of D2 A3 Re-analysis of D3 RD Re-extraction of dilution RE Re-extraction of original RC. Re-extraction Confirmation RL Reporting Limit Relative Percent Difference of duplicate (unrounded) analyses RPD Relative Response Factor RRF RT Retention Time ``` ## QUALITY ASSURANCE METHODS ## REFERENCES AND NOTES Report Date: 10/06/2006 | RTW | Retention Time Window Sample ID A 9 digit number unique for each sample, the first | |---------|---| | | six digits are referred as the job number | | SCB | Seeded Control Blank | | SD | Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) | | UCB | Unseeded Control Blank | | SSV | Second Source Verification Standard | | SLCS | Solid Laboratory Control Standard(LCS) | | PHC | pH Calibration Check LCSP pH Laboratory Control Sample | | LCDP | pH Laboratory Control Sample Duplicate | | MDPH | pH Sample Duplicate | | MDFP | Flashpoint Sample Duplicate | | LCFP | Flashpoint LCS | | G1 | Gelex Check Standard Range 0-1 | | G2 | Gelex Check Standard Range 1-10 | | G3 | Gelex Check Standard Range 10-100 | | G4 | Gelex Check Standard Range 100-1000 | | Note 1: | The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current | | abbrevi | ation used. EX. ICS S=ICS Post Spike (GFAA); MSS=MS Post Spike (GFAA) | | Note 2: | The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the | | | ng limit. The control limit is represented as +/- the RL. | | - | • | STL Chicago 2417 Bond Street University Park, IL 60466 Tel: 708 534 5200 Fax: 708 534 5211 www.stl-inc.com # SEVERN TRENT LABORATORIES ANALYTICAL REPORT JOB NUMBER: 249132 Prepared For: SCS Engineers, Inc. 10975 El Monte Suite 100 Overland Park, KS 66211 Project: GSA - SLOP Attention: David Brewer Date: 10/27/2006 (b) (6) Sia Richard C. Wright Name: Title: Project Manager E-Mail: rwright@stl-inc.com Date STL Chicago 2417 Bond Street 10/27/06 University Park, IL 60466 PHONE: (708) 534-5200 FAX..: (708) 534-5211 This Report Contains (78 # Severn Trent Laboratories - Chicago METALS CASE NARRATIVE Client: SCS Engineers, Inc. Project: GSA-SLOP STL#: 249132 1. This narrative covers Metals analysis of samples in the above Job 249132. Method Refs: USEPA, SW-846 - 2. All analyses were performed within the required holding times. - 3. All Initial and Continuing Calibration Verification (ICV/CCV's) were within control limits. - 4. All Initial and Continuing Calibration Blanks (ICB/CCB's) were within control limits. - 5. All ICP Interference (ICSA/ICSAB) Check Standards were within control limits. - 6. All Preparation/Method Blanks were less than the Reporting Limit. - 7. Laboratory Control Sample (LCS) recoveries were within the 80-120% control limits. - 8. Matrix QC performed on Sample 32 (Hg). Matrix Spike recoveries were within the 75-125% control limits. Duplicate analysis were within the 20% RPD control limits. (b) (6) Lisa M. Ödeshoo Metals Supervisor 10-16-06 Date Date Rec'd: 10/13/06 ## Severn Trent Laboratories - Chicago GC/MS BNA Case Narrative SCS Engineering, Inc. **GSA-SLOP** Job Number: 249132 BNA DATA: - 1. All extractions and analyses were performed within recommended hold times. - 2. The MB (Method Blank) had all target compounds below the contract required quantitation limit (CRQL). - 3. In-house recovery limits and two method-control compounds were used as QC evaluation for the LCS (Laboratory Control Sample). All control spike recoveries were within the QC limits in the LCS. - 4. Matrix Spike/Matrix Spike Duplicate analyses were performed on the sample -31. In-house statistical recovery limits and the two method control compounds were used for QC evaluation. The MS/MSD had two, one of the controlled spike recoveries, respectively, above the QC limits, and all RPD values within the QC limit. All of the other controlled spike recoveries and RPD values were within the QC limits for the specified compounds in the Matrix Spike/Matrix Spike Duplicate samples. - 5. The samples 33 and LCS had one surrogate low, but greater than ten percent. The sample -34 D1 had one surrogate above the QC limit. No corrective action was required. The surrogates were diluted out of the secondary dilution for 32 and reported as "D". All other samples had all surrogate recoveries within in-house generated QC limits. - 6. All analyses were performed following USEPA SW846 8270C protocol. All samples had internal standard areas and retention times within the acceptance limits as compared to the midpoint of the initial calibration. - 7. The samples were extracted and analyzed as low-level soils; therefore, normal detection limits apply. The results are on a dry weight basis. Samples -31, -32 and -34 required initial dilutions for matrix. Samples -32, -34 and -36 required secondary dilutions for target compounds. (b) (6) Gary Rynkar GC/MS BNA Supervisor | 10/25/6 | Date ## STL Chicago PCB Case Narrative SCS Engineers, Inc. GSA - SLOP Job #: 249132-1 through 10 **PCBs** 1. STL Chicago used the following Gas Chromatographic systems for the analysis of PCBs: | <u>ID#</u> | <u>INSTRUMENT</u> | COLUMN TYPE | DETECTOR | |------------|-------------------|-------------------------|------------------| | 31 | HP 6890 | Rtx-5 (Primary) | Electron Capture | | 32 | HP 6890 | Rtx-Clp2 (Confirmation) | Electron Capture | - 2. These wipe samples were extracted based on SW846 method 3550. All extracts were analyzed for PCBs based on SW846 method 8082. All extracts received a sulfuric acid cleanup in order to reduce matrix interference. Samples 249132-2, 5 and 8 were analyzed at a 1/10 dilution due to non-target compounds detected in samples. - All required holding times were met for the extraction and analysis. 3. - 4. The method blank was below the reporting limits for all Aroclors. - The surrogate compounds used for this analysis were Decachlorobiphenyl (DCB) and 5. Tetrachloro-m-xylene (TCX). All surrogate recoveries were
within statistical control limits. - A solution containing Aroclor 1016 and Aroclor 1260 was used for spiking. 6. - 7. All blank spike recoveries were within statistical control limits. - 8. A matrix spike and a matrix spike duplicate were not performed on these samples. - 9. All initial and continuing standard calibrations associated with these samples were in control on both columns. All SSV recoveries were within limits of 85%-115%. - Target compounds were confirmed using a second column. All results were reported from 10. the primary column. (b) (6) Brenda J. Thompson Organics Supervisor ## STL Chicago Explosives Case Narrative SCS Engineers, Inc. GSA – SLOP - Investigation Job #: 249132-30 and 35 Explosives 1. STL Chicago uses the following HPLC systems for analysis of Nitroaromatics and Nitramines: | ID# | <u>INSTRUMENT</u> | COLUMN TYPE | DETECTOR | |-----|-------------------|-------------|-----------------| | 35 | Agilent 1100 | C-18 | UV - 254nm | - 2. These samples were extracted and analyzed for explosives based on SW846 method 8330. These samples were analyzed at 1/5 due to sample matrix, therefore the reporting limits are elevated to reflect this necessary dilution. - 3. All required holding times were met for the extraction and analysis. - 4. The method blank was below the reporting limit for all target compounds. - 5. The surrogate compound used for this analysis was 1,2-Dinitrobenzene (1,2-DNB). All surrogate recoveries were within statistical control limits. - 6. All blank spike recoveries were within statistical control limits. - 7. A matrix spike and a matrix spike duplicate were not performed on these samples. - 8. All initial and continuing standard calibrations associated with these samples were in control on the primary column (C18). - 9. Target compounds were not detected in the primary analysis. Therefore, a second column confirmation was not required. | (b) (6) | | |---------------------|---------| | | 10-26-0 | | Brenda J. Thompson | Date | | Organics Supervisor | | ## STL Chicago is part of Severn Trent Laboratories, Inc. # SAMPLE INFORMATION Date: 10/27/2006 Job Number.: 249132 Customer...: SCS Engineers, Inc. Attn.....: David Brewer Project Number.....: 20006654 Customer Project ID...: GSA - SLOP Project Description...: GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 249132-1 | 102FL00R2WS101 | Wipe | 10/11/2006 | 15:45 | 10/13/2006 | 10:00 | | 249132-2 | 102FL00R2WS102 | Wipe | 10/11/2006 | 15:55 | 10/13/2006 | 10:00 | | 249132-3 | 102FL00R2WS103 | Wipe | 10/11/2006 | 16:10 | 10/13/2006 | 10:00 | | 249132-4 | 102FL00R2WS104 | Wipe | 10/11/2006 | 16:20 | 10/13/2006 | 10:00 | | 249132-5 | 102FL00R2Ws105 | Wipe | 10/11/2006 | 16:25 | 10/13/2006 | 10:00 | | 249132-6 | 102FL00R2WS106 | Wipe | 10/11/2006 | 16:30 | 10/13/2006 | 10:00 | | 249132-7 | 102FL00R2WS107 | Wipe | 10/11/2006 | 16:35 | 10/13/2006 | 10:00 | | 249132-8 | 102FL00R2WS108 | Wipe | 10/11/2006 | 16:45 | 10/13/2006 | 10:00 | | 249132-9 | 102FL00R2WS109 | Wipe | 10/11/2006 | 16:50 | 10/13/2006 | 10:00 | | 249132-10 | 102FL00R2Ws110 | Wipe | 10/11/2006 | 17:00 | 10/13/2006 | 10:00 | | 249132-11 | 102FL00R2WS111 | Wipe | 10/12/2006 | 07:55 | 10/13/2006 | 10:00 | | 249132-12 | 102FL00R2Pc111 | Solid | 10/12/2006 | 07:55 | 10/13/2006 | 10:00 | | 249132-13 | 102FL00R2WS112 | Wipe | 10/12/2006 | 08:15 | 10/13/2006 | 10:00 | | 249132-14 | 102FL00R2Pc112 | Solid | 10/12/2006 | 08:15 | 10/13/2006 | 10:00 | | 249132-15 | 102FL00R1WS113 | Wipe | 10/12/2006 | 08:30 | 10/13/2006 | 10:00 | | 249132-16 | 102FL00R1Fc113 | Solid | 10/12/2006 | 08:30 | 10/13/2006 | 10:00 | | 249132-17 | 102FL00R1WS114 | Wipe | 10/12/2006 | 09:00 | 10/13/2006 | 10:00 | | 249132-18 | 102FL00R1PC114 | Solid | 10/12/2006 | 09:00 | 10/13/2006 | 10:00 | | 249132-19 | 102DFL00R2WS115 | Wipe | 10/12/2006 | 09:20 | 10/13/2006 | 10:00 | | 249132-20 | 102DFL00R2PC115 | Solid | 10/12/2006 | 09:20 | 10/13/2006 | 10:00 | | 249132-21 | 102DFLOOR1WS116 | Wipe | 10/12/2006 | 09:30 | 10/13/2006 | 10:00 | | 249132-22 | 102DFL00R1PC116 | Solid | 10/12/2006 | 09:30 | 10/13/2006 | 10:00 | | 249132-23 | 102DFL00R1WS117 | Wipe | 10/12/2006 | 09:35 | 10/13/2006 | 10:00 | | 249132-24 | 102DFLOOR1PC117 | Solid | 10/12/2006 | 09:35 | 10/13/2006 | 10:00 | | 249132-25 | 102EFLOOR2WS118 | Wipe | 10/12/2006 | 09:45 | 10/13/2006 | 10:00 | | 249132-26 | 102EFL00R2PC118 | Solid | 10/12/2006 | 09:45 | 10/13/2006 | 10:00 | | | | | | | | | | | | | | : | * | | ## STL Chicago is part of Severn Trent Laboratories, Inc. # SAMPLE INFORMATION Date: Job Number.: 249132 Customer...: SCS Engineers, Inc. Attn.....: David Brewer Project Number.....: 20006654 Customer Project ID...: GSA - SLOP Project Description...: GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |---|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 249132-27 | 102EFL00R1WS119 | Wipe | 10/12/2006 | 10:00 | 10/13/2006 | 10:00 | | 249132-28 | 102EFL00R1PC119 | Solid | 10/12/2006 | 10:00 | 10/13/2006 | 10:00 | | 249132-29 | 102csss101 | Soil | 10/12/2006 | 11:45 | 10/13/2006 | 10:00 | | 249132-30 | 102csss102 | Soil | 10/12/2006 | 12:00 | 10/13/2006 | 10:00 | | 249132-31 | 102csss103 | Soil | 10/12/2006 | 12:15 | 10/13/2006 | 10:00 | | 249132-32 | 102csss104 | Soil | 10/12/2006 | 12:25 | 10/13/2006 | 10:00 | | 249132-33 | 102csss105 | Soil | 10/12/2006 | 12:45 | 10/13/2006 | 10:00 | | 249132-34 | 102csss106 | Soil | 10/12/2006 | 12:55 | 10/13/2006 | 10:00 | | 249132-35 | 102csss107 | Soil | 10/12/2006 | 13:05 | 10/13/2006 | 10:00 | | 249132-36 | 102csss108 | Soil | 10/12/2006 | 13:30 | 10/13/2006 | 10:00 | *************************************** | STL Chicago is part of Severn Trent Laboratories, Inc. | L T S
Date:10/27/2006 | ATTN: payid Brewer | e ID: 249132-1
: 10/13/2006
: 10:00 | RL DILUTION UNITS BATCH DT DATE/TIME TECH | 0.50 1.00000 ug/wipe 192097 10/16/06 2200 bjt | | |--------------------------|---------------------|--|---|--|-----------------------------| | BORATORY TEST RESU | PROJECT: GSA - SLOP | Laboratory Sample
Date Received
Time Received | SAMPLE RESULT Q FLAGS | ND ND 0.32 | Page 3 | | Job Number: 249132 | Engineers, Inc. | Customer Sample ID: 102FLooR2Ws101
Date Sampled: 10/11/2006
Time Sampled: 15:45
Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Aroclor 1016, Wipe
Aroclor 1221, Wipe
Aroclor 1232, Wipe
Aroclor 1242, Wipe
Aroclor 1254, Wipe
Aroclor 1260, Wipe | * In Description = Dry Wgt. | | - | CUSTOMER: SCS | Customer
Date Sam
Time Sam
Sample M: | TEST METHOD | 8082 | | STL Chicago is part of Severn Trent Laboratories, Inc. TEST | Date:10/27/2006 | David Brewer | | BATCH DT DATE/TIME TECH | 192097 | | |--------------------|---------------------|--|----------------------------|--|-----------------------------------| | Date:10 | ATTN: | |
TION UNITS | 000 ug/wipe
000 ug/wipe
000 ug/wipe
000 ug/wipe
000 ug/wipe
000 ug/wipe | | | So ⊢− | |): 249132-2
.: 10/13/2006
.: 10:00 | RL DILUTION | 5.0
10.0000
5.0
10.0000
5.0
10.0000
5.0
10.0000
5.0 | | | T RESUL | SLOP | Laboratory Sample ID:
Date Received:
Time Received: | a | wwwww
aaaaaa | | | F | GSA - SI | Labor
Date
Time | O FLAGS | כככככ | Page 4 | | LABORATORY | PROJECT: | | SAMPLE RESULT 6 | 22222 | 30 | | | | | NO | | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FL00R2WS102
Date Sampled: 10/11/2006
Time Sampled: 15:55
Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | PCB Analysis
Aroclor 1016, Wipe
Aroclor 1232, Wipe
Aroclor 1242, Wipe
Aroclor 1254, Wipe
Aroclor 1260, Wipe | \star In Description = Dry Wgt. | | | CUSTOMER: SCS | Customer
Date Sam
Time Sam
Sample M | TEST METHOD | 8082 | | STL Chicago is part of Severn Trent Laboratories, Inc. | | Brewer | | DT DATE/TIME TECH | 10/16/06 2331 bjt
10/16/06 2331 bjt
10/16/06 2331 bjt
10/16/06 2331 bjt
10/16/06 2331 bjt
10/16/06 2331 bjt
10/16/06 2331 bjt | |--------------------|-----------------|---|----------------------------|---| | Date:10/27/2006 | David Bre | | ВАТСН | 192097
192097
192097
192097
192097
192097 | | Date:10 | ATTN: | | UNITS | ug/kipe
ug/kipe
ug/kipe
ug/kipe
ug/kipe | | | | | DILUTION | 7.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | | σ | | 249132-3
10/13/2006
10:00 | RL | 0.50
0.50
0.50
0.50
0.50
0.50 | | T RESULT | <u>C</u> | Laboratory Sample ID:
Date Received
Time Received | TOW | 0.32
0.32
0.32
0.32
0.32
0.32 | | F
S | GSA - SLOP | Labo
Date
Time | FLAGS | | | ABORATORY | PROJECT: (| | SAMPLE RESULT Q | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | Job Number: 249132 | Engineers, Inc. | Customer Sample ID: 102FL00R2W3103 Date Sampled: 10/11/2006 Time Sampled: 16:10 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Aroclor 1016, Wipe
Aroclor 1221, Wipe
Aroclor 1232, Wipe
Aroclor 1242, Wipe
Aroclor 1254, Wipe
Aroclor 1260, Wipe | | | CUSTOMER: SCS | Customer
Date Sam
Time Sam
Sample M | TEST METHOD | 8088 | Page 5 * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. | | u-ener | | DT DATE/TIME TECH | 10/17/06 0001 bjt
10/17/06 0001 bjt
10/17/06 0001 bjt
10/17/06 0001 bjt
10/17/06 0001 bjt
10/17/06 0001 bjt | | |-------------------------|---------------------|---|----------------------------|--|--| | Date:10/27/2006 | David Brewer | | ВАТСН | 192097
192097
192097
192097
192097
192097 | | | Date:1 | ATTN: | | UNITS | ug/wipe
ug/wipe
ug/wipe
ug/wipe
ug/wipe | | | | | | DILUTION | 1.00000
1.00000
1.00000
1.00000
1.00000 | | | 8 | | e ID: 249132-4
: 10/13/2006
: 10:00 | R | 0.50
0.50
0.50
0.50
0.50
0.50 | | | RESUL | втот | atory Sampl
Received
Received | MDL | 0.32
0.32
0.332
0.332
0.332 | | | E S | GSA - | Labor
Date
Time | Q FLAGS | | | | ABORATORY | PROJECT: | | SAMPLE RESULT | <u> </u> | | | L
Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FLOOR2WS104 Date Sampled: 10/11/2006 Time Sampled: 16:20 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | PCB Analysis
Aroclor 1016, Wipe
Aroclor 1232, Wipe
Aroclor 1248, Wipe
Aroclor 1254, Wipe
Aroclor 1260, Wipe | | | | CUSTOMER: SCS E | Customer
Date Samp
Time Samp
Sample Ma | TEST METHOD | 8082 | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. | | | | ТЕСН | b b b b b b b b b b b b b b b b b b b | |--------------------|---------------------|--|---------------|--| | | | | DATE/TIME | 10/17/06 0031
10/17/06 0031
10/17/06 0031
10/17/06 0031
10/17/06 0031
10/17/06 0031 | | \$ | rewer | | Δ | 66666 | | Date:10/27/2006 | ATTN: David Brewer | | ВАТСН | 192097
192097
192097
192097
192097
192097 | | Date:1 | ATTN: | | UNITS | ug/Wipe
ug/Wipe
ug/Wipe
ug/Wipe
ug/Wipe | | | | | DILUTION | 10.0000
10.0000
10.0000
10.0000
10.0000
10.0000 | | | | 249132-5
10/13/2006
10:00 | RL | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | | S T | | | | | | T RESUL | d | Laboratory Sample ID:
Date Received:
Time Received | TOW | wwwwww
aaaaaaa | | π
E
S | -SLOP | Labor
Date
Time | FLAGS | | | | GSA | | a FU | | | ABORATORY | PROJECT: | | SAMPLE RESULT | 0°, | | LAE | .2ws105
106 | PARAMETER/TEST DESCRIPTION | | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FLOOR2Ws105
Date Sampled: 10/11/2006
Time Sampled: 16:25
Sample Matrix: Wipe | PARAMETER | PCB Analysis
Aroclor 1016, Wipe
Aroclor 1232, Wipe
Aroclor 1242, Wipe
Aroclor 1248, Wipe
Aroclor 1260, Wipe
Aroclor 1260, Wipe | | کر | CUSTOMER: SCS ER | Customer Date Samp
Time Samp
Sample Man | TEST METHOD | 8082 | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. TEST | | | | TECH | 000000
000000
000000000000000000000000 | | |--------------------|---------------------|---|----------------------------|--|-----------------------------------| | | | | DATE/TIME T | 10/17/06 0141
10/17/06 0141
10/17/06 0141
10/17/06 0141
10/17/06 0141
10/17/06 0141 | | | 2006 | David Brewer | | сн рт | | | | Date:10/27/2006 | | | ВАТСН | 192097
192097
192097
192097
192097
192097 | | | Date: | ATTN: | | UNITS | ug/wipe
ug/wipe
ug/wipe
ug/wipe
ug/wipe
ug/wipe | | | | | | DILUTION | 1.00000
1.00000
1.00000
1.00000
1.00000 | | | ςς
 | | 10: 249132-6
: 10/13/2006
: 10:00 | RL | 0.50
0.50
0.50
0.50
0.50
0.50
0.50 | | | ST RESULT | SLOP | Laboratory Sample ID:
Date Received
Time Received | MOL | 0.32
0.32
0.32
0.32
0.32
0.32 | | | ក
ភា | 68A - SI | L D D S S S S S S S S S S S S S S S S S | FLAGS | | ge 8 | | LABORATORY | PROJECT: (| | SAMPLE RESULT Q | | Page | | _ | | | | | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FL00R2WS106 Date Sampled: 10/11/2006 Time Sampled: 16:30 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Aroclor 1016, Wipe
Aroclor 1221, Wipe
Aroclor 1242, Wipe
Aroclor 1248, Wipe
Aroclor 1254, Wipe
Aroclor 1260, Wipe | \star In Description = Dry Wgt. | | | CUSTOMER: SCS | Customer
Date San
Time San
Sample h | TEST METHOD | 8082 | | Page 8 STL Chicago is part of Severn Trent Laboratories, Inc. | Date:10/27/2006 | ATTN: David Brewer | | ION UNITS BATCH DT DATE/TIME TECH | 00 ug/Wipe 192097 10/17/06 0211 bjt 000 ug/Wipe 192097 10/17/06 ug/Wipe 192097 10/17/06 ug/Wipe 19 | | |--------------------|---------------------|--|-----------------------------------
--|--| | S L | | ID: 249132-7
: 10/13/2006
: 10:00 | RL DILUTION | 0.50
0.50
0.50
0.50
1.00000
0.50
1.00000
0.50
1.00000
0.50
1.00000 | | | TEST RESUL | - SLOP | Laboratory Sample ID: Date Received | FLAGS MDL | 0.32
0.32
0.32
0.32
0.32
0.32 | | | АВОКАТОКҮ | PROJECT: GSA | | SAMPLE RESULT Q FL | 222222 | | | Γ, 1 | | | ESCRIPTION | | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FLOOR2WS107
Date Sampled: 10/11/2006
Time Sampled: 16:35
Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | PCB Analysis
Aroclor 1016, Wipe
Aroclor 1232, Wipe
Aroclor 1242, Wipe
Aroclor 1254, Wipe
Aroclor 1256, Wipe | | | dol | CUSTOMER: SCS Eng | Customer Sample ID: Date Sampled Time Sampled | TEST METHOD | 8082
Pr
Ar
Ar
Ar
Ar
Ar | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. T E S T | | 171.11 | | | 7 | |--------------------|-------------------------------|---|--|--| | | Вгемег | | 10/17/06 0242 bjt
10/17/06 bjt | minima ganna a | | Date:10/27/2006 | David Br | | 192097
192097
192097
192097
192097
192097 | | | Date:10 | ATTN: | | ug/wipe
ug/wipe
ug/wipe
ug/wipe
ug/wipe
ug/wipe | The state of s | | | | | DILUTION
10.0000
10.0000
10.0000
10.0000
10.0000 | | | ഗ
<u>⊢</u> - | |): 249132-8
:: 10/13/2006
:: 10:00 | 7.0
0.0
0.0
0.0
0.0
0.0
0.0 | 4 | | T RESUL. | A (| Laboratory Sample ID:
Date Received
Time Received | ## ################################### | 7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | ⊢
m
∾ | GSA - SLOP | Labo
Date
Time | FLAGS | Page 10 | | ABORATORY | PROJECT: | | SAMPLE RESULT OU U U U U U U U U U U U U U U U U U U | Pa | | Job Number: 249132 | CUSTOMER: SCS Engineers, Inc. | Customer Sample ID: 102FLOOR2WS108 Date Sampled: 10/11/2006 Time Sampled: 16:45 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION PCB Analysis Aroclor 1016, Wipe Aroclor 1232, Wipe Aroclor 1242, Wipe Aroclor 1248, Wipe Aroclor 1254, Wipe Aroclor 1260, Wipe | * In Description = Dry Wgt. | | | CUSTOMER: SCS | Custome
Date Sa
Time Sa
Sample | 8082 | COLUMN TO THE PARTY OF PART | | | | | | | Page 10 STL Chicago is part of Severn Trent Laboratories, Inc. | | Вгемеп | | DT DATE/TIME TECH | 10/17/06 0342 bjt
10/17/06 0342 bjt
10/17/06 0342 bjt
10/17/06 0342 bjt
10/17/06 0342 bjt
10/17/06 0342 bjt | |---|---|--|--|--| | Date:10/27/2006 | David Br | | ВАТСН | 192097
192097
192097
192097
192097
192097 | | Date:1 | ATTN: | | UNITS | ug/Wipe
ug/Wipe
ug/Wipe
ug/Wipe
ug/Wipe
ug/Wipe | | | | | DILUTION | 1. 00000
1. 00000
1. 00000
1. 00000
1. 00000
1. 00000 | | ω
 | | ID: 249132-9
: 10/13/2006
: 10:00 | RL | 0.50
0.50
0.50
0.50
0.50
0.50 | | T RESUL | SL0P | atory Sample
Received
Received | NDL. | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | FS | GSA ~ SL | Labor
Date
Time | FLAGS | | | ABORATORY | PROJECT: | | SAMPLE RESULT Q | 22222
22222 | | L A B Job Number: 249132
SCS Engineers, Inc. | Customer Sample ID: 102FLOOR2WS109 Date Sampled: 10/11/2006 Time Sampled: 16:50 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Aroclor 1016, Wipe
Aroclor 1221, Wipe
Aroclor 1242, Wipe
Aroclor 1248, Wipe
Aroclor 1254, Wipe
Aroclor 1260, Wipe | | | | CUSTOMER: SCS | Customer
Date Sam
Time Sam
Sample P | TEST METHOD | 8085 | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. TEST | | 11111 | | - | | | |--------------------|------------|--|----------------------------|---|---------------------| | | | | ТЕСН | 33 0 0 1 1 2 2 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | | | TIME | 5 0413
5 0413
5 0413
5 0413
5 0413
5 0413 | | | | | | DATE/TIME | 10/17/06
10/17/06
10/17/06
10/17/06
10/17/06
10/17/06 | | | | Brewer | | DT | 6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 | | | ,2006 | d Bre | | ВАТСН | 790
790
790
790
790
790
790
790 | | | 0/27/ | David | | BA | 192097
192097
192097
192097
192097
192097 | | | Date:10/27/2006 | ATTN: | | UNITS | ug/wipe
ug/wipe
ug/wipe
ug/wipe
ug/wipe | | | • | | | | //6n
//6n | | | | | | DILUTION | 1.00000
1.00000
1.00000
1.00000
1.00000
1.00000 | | | | | | DIF | <u> </u> | | | | | -10
2006 | | 0 0 0 20
0 0 0 | | | | | 249132-10
10/13/2006
10:00 | RL | 000000 | | | ∽ | | ** ** ** | | | | | ა
ე | | | | 222222 | | | ∝
m | | ry Sal
eived
eived | MDL | 00.000
00.0000
00.00000000000000000000 | | | - | OP | Laboratory Sample
Date Received
Time Received | | | | | ഗ
ш | - SLOP | Lab
Dat | FLAGS | | 12 | | ≻ | : GSA | | O F | 22222 | Page | | <u>~</u> | PROJECT: | | ULT | | | | α
Α
 | PR | | E RES | | | | O
83 | | | SAMPLE RESULT
| | | | L A | | | | <u> </u> | | | | | | | | | | | | | 7 | | | | | | | IPTIO | | | | | | | ESCR | | Dry Wgt | | | | 18110 | EST | | | | 2 | | .00R2%
/2006 | TER/J | : : : : : : : : : : : : : : : : : : : | tion | | 24913 | Inc. | 102FLOOR2WS110
10/11/2006
17:00
Wipe | PARAMETER/TEST DESCRIPTION | i i | * In Description == | | per: | | | 6 | malysis
or 1016,
or 1221,
or 1248,
or 1248,
or 1254,
or 1260, | In De | | Job Number: 249132 | Engineers, | iample
ed
rîx | | PCB Analysis
Aroclor 1016,
Aroclor 1232,
Aroclor 1248,
Aroclor 1248,
Aroclor 1260, | * | | ος | SCS En | Customer Sample ID:
Date Sampled
Time Sampled:
Sample Matrix: | 0 | <u>.</u> च्चच्च्च | | | | ER: S | Custo
Date
Time
Sampl | TEST METHOD | 8082 | | | | CUSTOMER: | | TEST | 8 | | | | | | | | | Page 12 STL Chicago is part of Severn Trent Laboratories, Inc. | | | ТЕСН | , ok | | |--------------------|--|----------------------------|-------------------|--| | | | DATE/IIME T | 10/19/06 1504 gok | | | 27/2006 | avid Brewe | BATCH DT | 191932 | | | Date:10/27/2006 | ATTN: David Brewer | UNITS | ug/Wipe | | | | | NOILUTION | ç | | | S. | : 249132-11
: 10/13/2006
: 10:00 | RL | 0.020 | | | RESULT | SLOP Laboratory Sample ID: 249132-11 Date Received 10/13/2006 | MDL | 0.0061 | | | TEST | PROJECT: GSA - SLOP
Labor
Date
Time | FLAGS | | | | I B O R A T O R Y | PROJECT: | SAMPLE RESULT Q | 0.17 | | | LA | | 2 | | | | 2 |)
2006
72006 | PARAMETER/TEST DESCRIPTION | lids | The state of s | | Job Number: 249132 | <pre>ER: SCS Engineers, Inc. Customer Sample ID: 102FL00R2WS111 Date Sampled: 10/12/2006 Time Sampled: 07:55 Sample Matrix: Wipe</pre> | PARAMET | Mercury, Wipe | | | ب | CUSTOMER: SCS Engineers, Inc Customer Sample ID: 102 Date Sampled 10/ Time Sampled 07: Sample Matrix Wip | TEST METHOD | 7471A | | \star In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. Job Number: 249132 Date:10/27/2006 RESULTS TEST | Cuestoner Sample ID: 1/02/L006/20-111 | USTOMER: SCS | CUSTOMER: SCS Engineers, Inc. | PROJECT: GSA - SLOP | 3SA - SLOP | | | | ATTN: | David Brewer | - PWe | | | |--|--|--|---------------------|-----------------------|--|--|----------|-------|---|-------|----------|----------| | Hercury (CVAA) Solids 6.4 0.30 1.6 50 mg/kg 191485 10/17/06 0959 | Customer
Date Sam
Time Sam
Sample M | Sample ID: 10ZFL00R2Pc111
pled: 10/12/2006
pled: 07:55
atrix: Solid | | Labor
Date
Time | atory Sample I
Received
Received | 10: 249132-12
: 10/13/2006
: 10:00 | | | | | | | | Mercury, CVAA) Solids 6.4 0.30 1.6 50 mg/kg 191485 | TEST METHOD | PARAMETER/TEST DESCRIPTION | O | | TGW | R | DILUTION | UNITS | *************************************** | | | EC | | | <u> </u> | Mercury, Solid | 4. | | 0.30 | , .
6. | 20 | mg/Kg | 191485 | 10/17 | /06 0959 | <u>@</u> | | | | | | | | | | | | | | | Page 14 STL Chicago is part of Severn Trent Laboratories, Inc. | | | | TECH | × on | |--------------------|---------------------|---|----------------------------|-------------------| | | | | DATE/TIME | 10/19/06 1506 gok | | 27/2006 | David Brewer | | ВАТСН DT | 191932 | | Date:10/27/2006 | ATTN: De | | UNITS | ug/Wipe 15 | | | | | DILUTION | 5 | | | | 3213
3/2006
10 | RL | 0.020 | | S
L T | | ID: 2491
: 10/1 | | | | T RESU | 40 | Laboratory Sample ID: 249132-13
Date Received: 10/13/2006
Time Received: 10:00 | Παw | 0.0061 | | H
S | GSA - SLI | Labo
Dato
Tim | Q FLAGS | | | LABORATORY | PROJECT: GSA - SLOP | | SAMPLE RESULT | 0.13 | | _ L | | | NO | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FL00R2Ws112 Date Sampled: 10/12/2006 Time Sampled: 08:15 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Mercury, Wipe | | qof | CUSTOMER: SCS Engi | Customer Sam
Date Samplec
Time Sample
Sample Matri | TEST METHOD | 7471A Mer | * In Description = Dry Wgt. | Inc. | |---------------| | Laboratories, | | Trent | | Severn | | οę | | part | | ŗ. | | Chicago | | STL | RESULTS T EST | | | | TIME TECH | 10/17/06 1001 daj | | |--------------------|-------------------------------|--|----------------------------|-------------------------------|--| | 90 | David Brewer | | DT DATE/TIME | | | | Date:10/27/2006 | ATTN: David | | S BATCH | 191485 | | | Date | ATT | | STINU NC | mg/Kg | | | | | | DILUTION | 50 | | | s
L | | 10: 249132-14
: 10/13/2006
: 10:00 | Ř. | 99.0 | | | ST RESULT | SLOP | Laboratory Sample ID: 249132-14
Date Received: 10/13/2006
Time Received: 10:00 | Jaw | 0.12 | | | l.l.J
 | | Lab
Dat
Tim | Q FLAGS | | Page 16 | | ABORATORY | PROJECT: GSA | | SAMPLE RESULT | . .
8. | | | Job Number: 249132 | CUSTOMER: SCS Engineers, Inc. | Customer Sample ID: 102FLOOR2PC112 Date Sampled: 10/12/2006 Time Sampled: 08:15 Sample Matrix: Solid | PARAMETER/TEST DESCRIPTION | Mercury, Solid Mercury, Solid | * In Description = Dry Wgt. | | | CUSTOMER: SCS | Customer
Date Sam
Time Sam
Sample M | TEST METHOD | 7471A | ************************************** | Page 16 STL Chicago is part of Severn Trent Laboratories, Inc. | *************************************** | | | 3 | ¥ | 7 | |---|--------------------------|---|----------------------------|-------------------|---| | | | | DATE/TIME TECH | 10/19/06 1508 gok | _ | | | wer | | | 10/19, | _ | | Date:10/27/2006 | David Brewer | | ватсн рт | 191932 | - | | Date:10, | ATTN: | | UNITS | ng/uipe | | | | | | DILUTION | _ | - | | | | ,9132–15
1/13/2006
1:00 | 7.
1. | 0.020 | | | S
⊢
i | | e ID: 24 | | | | | R E S U | | Laboratory Sample ID: 249132-15
Date Received: 10/13/2006
Time Received: 10:00 | MDL | 0.0040 | | | н
S
⊨ | GSA - SLOP | Labora
Date F
Time F | FLAGS | | | | A B O R A T O R Y | PROJECT: GS | | SAMPLE RESULT Q | 0.072 | | | L A Job Number: 249132 | Engineers, Inc. | Customer Sample ID: 102FL00R1WS113 Date Sampled: 10/12/2006 Time Sampled: 08:30 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Mercury, Wipe | | | 3 | CUSTOMER: SCS Engineers, | Customer
Date Samp
Time Samp
Sample Ma | TEST METHOD | 7471A | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. RESULTS TEST | | 11111 | | - | | | |--------------------|--------------------------|--|----------------------------|-----------------------|-----------------------------| | | | | TECH | | | | | | | TIME | 2 1003 | | | | | | DATE/TIME | 10/17/06 1003 daj | | | vo. | rewer | | М | 10 | | | Date:10/27/2006 | David Brewer | | ВАТСН | 191485 | | | Date:10 | ATTN: | | UNITS | mg/Kg | | | | | | DILUTION | 50 | | | | | \$2-16
\$/2006
} | W | 0.66 | | | s
L | | Laboratory Sample ID: 249132-16
Date Received: 10/13/2006
Time Received: 10:00 | | | | | RESULTS | | / Sample
ived | MDL | 0.12 | | | | å | oraton)
e Rece
e Rece | | | | |
m
∞ | PROJECT: GSA - SLOP | Lab
Dat
Tim |
FLAGS | | Page 18 | | ≻
~ | ROJECT: | | SULT | 10 | Pa | | LABORATORY TEST | Δ. | | SAMPLE RESULT | .2
.v | | | ¥
J | | | | | | | | | | z | | | | | | | PARAMETER/TEST DESCRIPTION | | t. | | | | Ĩ. | T DESC | | * In Description = Dry Wgt. | | | | 006
006 | R/TES | spi. | # Lo | | 49132 | i, | 02FL00
0/12/2
8:30
olid | RAMETE | os (4) Sol | cript | | er: 2 | s, Inc. | o s | Αq | sol (CVA | n Des | | Job Number: 249132 | CUSTOMER: SCS Engineers, | Customer Sample ID: 102FL00R1PC113 Date Sampled: 10/12/2006 Time Sampled: 08:30 Sample Matrix: Solid | | Mercury, CVAA) Solids | * | | ٥٢ | SCS En | omer S
Sampl
Sampl
le Mat | 00 | | | | | OMER: | Cust
Date
Time
Samp | TEST METHOD | A1747 | | | | CUST | | TES | 7 | | | | | | | | | Page 18 STL Chicago is part of Severn Trent Laboratories, Inc. | TORY TEST RESULTS Date:10/27/2006 PROJECT: 654 - SLOP ATTN: David Brever | | |---|-----| | ATTN: Laboratory Sample ID: 249132-17 Date Received: 10:00 Time Received: 10:00 Q FLAGS. MDL RL DILUTION UNITS 0.061 0.20 10 ug/Wipe | | | ATTN: Laboratory Sample ID: 249132-17 Date Received: 10:00 Time Received: 10:00 Q FLAGS. MDL RL DILUTION UNITS 0.061 0.20 10 ug/Wipe | | | ATTN: Laboratory Sample ID: 249132-17 Date Received: 10:00 Time Received: 10:00 Q FLAGS. MDL RL DILUTION UNITS 0.061 0.20 10 ug/Wipe | | | CT.: GSA SLOP CT.: GSA SLOP Laboratory Sample ID: 249732-17 Date Received: 10/13/2006 Time Received: 10:00 O.061 O.020 | | | CT.: GSA SLOP CT.: GSA SLOP Laboratory Sample ID: 249732-17 Date Received: 10/13/2006 Time Received: 10:00 O.061 O.020 | : | | CT.: GSA SLOP Laboratory Sample ID: Date Received Time Received G FLAGS. MDL | | | CT.: GSA SLOP Laboratory Sample ID: Date Received Time Received G FLAGS. MDL | | | CCI.: GSA | | | CCI.: GSA | | | CCI.: GSA | | | ROJECT: GSA-SULT G FLAG | | | ROJECT: | | | AMMPLE R | | | PTION | | | 249132 Inc. 102FL00R1WS114 10/12/2006 09:00 Wipe Wipe VAA) Solids ipe | | | 11Ws11v
006
ids | | | 9132
2FL00F
:00
pe
> Soli | | | Fr: 24
Linc
Tinc
Far.
CCVAA
Wipe | - | | Job Number: 249132 CUSTOMER: SCS Engineers, Inc. Customer Sample ID: 102FLOOR1WS114 Date Sampled: 09:00 Sample Matrix: Wipe TEST METHOD 7471A Mercury (CVAA) Solids Nercury, Wipe | | | John Mat Le Mat Le Mat | | | USTOMER: SC
Custome
Date Sc
Time Sc
Sample
7471A | | | | - 1 | Page 19 * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. | | | | TECH | 005 daj | | |--|---------------------|--|--------------------------------|--------------------------------|--| | | | | DATE/TIME | 10/17/06 1005 daj | | | | ewer | | ы | | | | Date:10/27/2006 | ATTN: David Brewer | | ВАТСН рт | 191485 | , | | Date:1 | ATTN: | | UNITS | mg/Kg | | | AND THE PROPERTY OF PROPER | | | DILUTION | 100 | | | T S | | b: 249132-18
.: 10/13/2006
.: 10:00 | 교 | m
M | | | T RESUL | ۹۶ | Laboratory Sample ID:
Date Received | TQN | 0.61 | | | TES | GSA - SLC | Labo
Daté
Tîme | FLAGS | | Page 20 | | ABORATORY | PROJECT: GSA - SLOP | | SAMPLE RESULT Q | 9 | Pa | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102FLOOR1PC114 Date Sampled: 10/12/2006 Time Sampled: 09:00 Sample Matrix: Solid | HOD PARAMETER/TEST DESCRIPTION | Mercury, Solids Mercury, Solid | * In Description = Dry Wgt. | | | CUSTONER: | Cust
Date
Time
Samp | TEST METHOD | 7471A | Activities and the second seco | Page 20 STi Chicago is part of Severn Trent Laboratories, Inc. | | | *************************************** | ТЕСН | у
О | 1 | |--------------------|---------------------|--|----------------------------|-------------------
--| | | | | DATE/TIME | 10/19/06 1517 gok | | | 9 | rewer | | ТО | | | | Date:10/27/2006 | David Brewer | | ВАТСН | 191932 | | | Date:10 | ATTN: | | STINO | ug/Wípe | | | | | | DILUTION | | | | | | 132-19
13/2006
00 | R. | 0.020 | 4 | | S
⊢ | | ID: 249 | | | | | T RESUL | 60 | Laboratory Sample ID: 249132-19 Date Received: 10/13/2006 Time Received: 10:00 | MDL | 0.0061 | | | T E S | GSA - SLOP | Lab
Dat
Tim | Q FLAGS | · | | | LABORAŢORY | PROJECT: | | SAMPLE RESULT Q | 0.047 | - | | LA | | | N | | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102DFLOOR2W3115 Date Sampled: 10/12/2006 Time Sampled: 09:20 Sample Matrix: Wipe | PARAMETER/TEST DESCRIPTION | Mercury, Wipe | A CONTRACTOR OF THE PROPERTY O | | 7 | CUSTOMER: SCS E | Customer
Date Samp
Time Samp
Sample Ma | TEST METHOD | 7471A | | * In Description = Dry Wgt. | Inc. | |---------------| | Laboratories, | | Trent | | Severn | | οţ | | part | | .;·· | | chicago | | STL | RESULTS TEST | Acceptance of the second secon | L Job Number: 249132 | A B O R A T O R Y | TEST RESUL | _ S | | Date:10, | Date:10/27/2006 | | | |--|---|-------------------|--|---|----------|----------|--------------------|-------------------|------| | CUSTOMER: SCS Engineers, | Engineers, Inc. | PROJECT: GSA - | A SLOP | | | ATTN: | ATTN: David Brewer | | | | Customer
Date San
Time San
Sample M | Customer Sample ID: 102DFLOOR2PC115 Date Sampled: 10/12/2006 Time Sampled: 09:20 Sample Matrix: Solid | | Laboratory Sample ID: 249132-20
Date Received: 10/13/2006
Time Received: 10:00 | D: 249132-20
.: 10/13/2006
.: 10:00 | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT Q | Q FLAGS MDL | RL. | DILUTION | UNITS | ватсн рт | DATE/TIME | TECH | | 7471A | Mercury, Solids | 1.2 | 0.061 | 0.33 | 0 | mg/Kg | 191485 | 10/17/06 1007 daj | daj | | | * In Description = Dry Wgt. | Page | Page 22 | | | | | | | STL Chicago is part of Severn Trent Laboratories, Inc. | 75006 | David Brewer | 191932 10/19/06 1519 gok | | |--------------------|--|-------------------------------------|--| | Date:1 | ATTW: | 1 ug/wipe 191932 | | | S 1 7 | • ID: 249132-21
: 10/13/2006
: 10:00 | 0.020 | | | | GSA SLOP
Laboratory Sample ID: 249132-21
Date Received 10/13/2006
Time Received 10:00 | 6.0061 | | | LABORATORY | PROJECT: GSA | O. 14 | | | Job Number: 249132 | CUSTOMER: SCS Engineers, Inc. Customer Sample ID: 102DFLOOR1WS116 Date Sampled: 10/12/2006 Time Sampled: Wipe | Mercury (CVAA) Solids Mercury, Wipe | | | , | CUSTOMER: SCS. Customer Date Samp Time Sample Ms | 7471A | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. | RATORY TEST RESULTS Date:10/27/2006 | PROJECT: 6SA - SLOP | Laboratory Sample ID: 249132-22 Date Received: 10/13/2006 Time Received: 10:00 | SAMPLE RESULT Q FLAGS MDL RL DILUTION UNITS BATCH DT DATE/TIME TECH | 6.1 0.30 1.6 50 mg/kg 191485 10/17/06 1014 daj | Page 24 | |-------------------------------------|-------------------------------|--|---|--|-----------------------------| | L A B Job Number: 249132 | CUSTOMER: SCS Engineers, Inc. | Customer Sample ID: 102DFLOOR1PC116 Date Sampled: 10/12/2006 Time Sampled: 09:30 Sample Matrix: Solid | TEST METHOD PARAMETER/TEST DESCRIPTION SAM | Mercury, Solid Mercury, Solid | * In Description = Dry Wgt. | Page 24 STL Chicago is part of Severn Trent Laboratories, Inc. | | | | TECH | ğ | |--------------------|-------------------------------|--|----------------------------|-------------------| | | La | | DATE/TIME | 10/19/06 1521 gok | | Date:10/27/2006 | David Brewer | | BATCH DT | 191932 | | Date:10 | ATTN | | UNITS | ug/Wipe | | | | | DILUTION | ~ | | S | |): 249132-23
:: 10/13/2006
:: 10:00 | W | 0.020 | | T RESULT | d | Laboratory Sample ID: 249132-23
Date Received: 10/13/2006
Time Received: 10:00 | MDL | 0.0061 | | T E S | GSA - SLOP | Labo
Date
Time | Q FLAGS | | | ABORATORY | PROJECT: | | SAMPLE RESULT @ | 0.080 | | | | | | | | | | 0R1WS117
306 | PARAMETER/TEST DESCRIPTION | वि । | | Job Number: 249132 | neers, Inc. | Customer Sample ID: 102DFLOOR1W3117 Date Sampled: 10/12/2006 Time Sampled: 09:35 Sample Matrix: Wipe | PARAMETER | Mercury, Wipe | | N dot | CUSTOMER: SCS Engineers, Inc. | Customer Samp
Date Sampled.
Time Sampled.
Sample Matrix | TEST METHOD | 7471A Merc | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. Job Number: 249132 Date:10/27/2006 RESULTS TEST | CUSTOMER: SCS | CUSTOMER: SCS Engineers, Inc. | PROJECT: GSA — SLOP | SA - SLOP | | | | ATTN: | David Brewer | Wel | |
--|---|---------------------|----------------------------------|---------------|--|---|---|--------------|--|-------------------| | Custome
Date Sar
Time Sar
Sample P | Customer Sample ID: 102DFLOOR1PC117 Date Sampled: 10/12/2006 Time Sampled: 09:35 Sample Matrix: Solid | | Laboratc
Date Rec
Time Rec | ory Sample Il | Laboratory Sample ID: 249132-24 Date Received 10/13/2006 Time Received 10:00 | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT Q F | FLAGS | Там | RL | DILUTION | UNITS | ватсн р | DT DATE/TIME | TME TECH | | 7471A | Mercury (CVAA) Solids
Mercury, Solid | 22 | | 0.61 | ĸ.
ĸ. | 100 | mg/Kg | 191485 | 10/17/06 | 10/17/06 1016 daj | | | | | | | | | | | | | | ANALUSA LALLES TITTETTE TERRETARIO DE LA CONTRACTORIO CONTRACTOR | * In Description = Dry Wgt. | Page | Page 26 | | AND THE REAL PROPERTY OF THE P | *************************************** | *************************************** | | ALL THE PROPERTY AND A SECOND AND A SECOND ASSESSMENT A | | Page 26 STL Chicago is part of Severn Trent Laboratories, Inc. | | L) | ABORATORY | ⊢
E
S | T RESUL | ω | | Date:10 | Date:10/27/2006 | | | |---|--|-------------------|----------------------|---|--|----------|---------|-----------------|-------------------|------| | STOMER: SCS | CUSTOMER: SCS Engineers, Inc. | PROJECT: GSA | GSA - SLOP | dC | | | ATTN: | David Brewer | ler | | | Custome
Date Sa
Time
Sa
Sample | Customer Sample ID: 102EFLOOR2WS118 Date Sampled: 10/12/2006 Time Sampled: 09:45 Sample Matrix: Wipe | | Labo
Date
Time | Laboratory Sample ID:
Date Received:
Time Received: | ID: 249132-25
: 10/13/2006
: 10:00 | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT G | a FLAGS | MOL | | DILUTION | UNITS | ВАТСН DT | DATE/TIME | ТЕСН | | 7471A | Mercury, Wipe | 090.0 | | 0.0061 | 0.020 | ~ | ug/W1pe | 191932 | 10/19/06 1523 gok | 99 k | | | x In Description = Dry Wat | E'd | Page 27 | | A CONTRACTOR OF THE PROPERTY O | | | | | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. RESULTS TEST | | | | TECH | '2 | | |--------------------|---------------------|---|----------------------------|-------------------|--| | | 19 4 | | DT DATE/TIME TE | 10/17/06 1018 daj | | | Date:10/27/2006 | ATTN: David Brewer | | ВАТСН D | 191485 | | | Date:10 | ATTN: | | UNITS | mg/Kg | | | | | | DILUTION | 10 | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | | s
⊢ | | 0: 249132–26
.: 10/13/2006
.: 10:00 | RL | 0.33 | | | T RESUL. | 4 | Laboratory Sample ID: 249132-26
Date Received 10/13/2006
Time Received 10:00 | Jaw | 0.061 | THE REAL PROPERTY AND ADDRESS OF THE ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY T | | ⊢
п
∾ | PROJECT: GSA - SLOP | Labo
Date
Time | 0 FLAGS | | Page 28 | | LABORATORY | PROJECT: | | SAMPLE RESULT G | 1.2 | Pč | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102EFLCOR2PC118 Date Sampled: 10/12/2006 Time Sampled: 09:45 Sample Matrix: Solid | PARAMETER/TEST DESCRIPTION | Mercury, Solid | * In Description = Dry Wgt. | | | CUSTOMER: SCS | Customer
Date Sam
Time Sam
Sample M | TEST METHOD | 7471A | | Page 28 STL Chicago is part of Severn Trent Laboratories, Inc. | | Jan | | DT DATE/TIME TECH | 10/19/06 1526 gok | | |--------------------|--------------------------------|--|--|-----------------------------|--| | Date:10/27/2006 | David Brewer | | ВАТСН D | 191932 | | | Date:10 | ATTN: | | UNITS | ug/Wipe | | | | | | DILUTION | | | | S | | D: 249132-27
.: 10/13/2006
.: 10:00 | RL | 0.020 | | | T RESUL | SLOP | Laboratory Sample ID: 249132-27 Date Received: 10/13/2006 Time Received 10:00 | MDL | 0.0061 | | | ω
⊢ | GSA - | Lab
Dat
Tim | 0 FLAGS | | | | LABORATORY | PROJECT: | | SAMPLE RESULT | 0.21 | | | Job Number: 249132 | CUSTOMER: SCS. Engineers, Inc. | Customer Sample ID: 102EFLOOR1WS119 Date Sampled: 10/12/2006 Time Sampled: 10:00 Sample Matrix: Wipe | TEST METHOD PARAMETER/TEST DESCRIPTION | Mercury, Wipe Mercury, Wipe | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. | | | | TECH | iaj | | |--------------------|-------------------------------|---|--|--|--| | | | | DATE/TIME | 10/17/06 1020 daj | | | 27/2006 | David Brewer | | ватсн рт | 191485 | | | Date:10/27/2006 | ATTN: D | | UNITS | mg/Kg | | | | | | DILUTION | 20 | *************************************** | | T S | | D: 249132-28
.: 10/13/2006
.: 10:00 | RL | 6. | \$ | | T RESUL | 3C0P | Laboratory Sample ID:
Date Received | Jgw | 0.30 | Annual designation of the state | | F
S | GSA - SL | Lab
Dati
Tim | FLAGS | | Page 30 | | ABORATORY | PROJECT: | | SAMPLE RESULT Q | 5.9 | Pa | | Job Number: 249132 | CUSTOMER: SCS Engineers, Inc. | Customer Sample ID: 102EFLOOR1PC119 Date Sampled: 10/12/2006 Time Sampled: 10:00 Sample Matrix: Solid | TEST METHOD PARAMETER/TEST DESCRIPTION | 7471A Mercury (CVAA) Solids Mercury, Solid | * In Description = Dry Wgt. | Page 30 STL Chicago is part of Severn Trent Laboratories, Inc. | LABORATORY TEST RESULTS Job Number: 249132 Date:10/27/2006 | ngineers, Inc. ATIN: David Brewer | Sample ID: 102CSSS101 Laboratory Sample ID: 249132-29 led: 10/12/2006 Date Received: 10/13/2006 Time Received: 10:00 | PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL RL DILUTION UNITS BATCH DT DATE/TIME TECH | % Solids Determination 97.8 0.10 0.10 1 % 191285 10/13/06 2039 clb % Moisture, Solid 2.2 0.10 1 % 191285 10/13/06 2039 clb | Mercury (CVAA) Solids 0.017 B 0.0062 0.034 1 mg/Kg 191485 10/17/06 1022 daj | Metals Analysis (ICAP Trace) 4700 Copper, Solid* Lead, Solid* 197568 10/18/06 2000 tds 10/18/06 2000 tds 10/18/06 2000 tds 10/18/06 2000 tds 11.9 1 mg/Kg 197568 10/18/06 2000 tds 10/18/06 2000 tds | | |--|-----------------------------------|--|--
--|---|--|--| | Job Number: 249 | CUSTOMER: SCS Engineers, Inc. | Customer Sample ID: 102C:
Date Sampled: 10/11
Time Sampled: 11:43
Sample Matrix: Soil | TEST METHOD PARAN | Method % Solids Detern % Solids, Solid | 7471A Mercury (CVAA) | 6010B Metals Analysis
Copper, Solid*
Lead, Solid*
Zinc, Solid* | | * In Description = Dry Wgt. STL Chicago is part of Severn Trent Laboratories, Inc. | LABORATORY TEST RESULTS Date:10/27/2006 | PROJECT: GSA - SLOP | Laboratory Sample ID: 249132-30 Date Received: 10:00 Time Received: 10:00 | SAMPLE RESULT Q FLAGS NDL DILUTION UNITS BATCH DT DATE/IIME TECH | 88.4 0.10 1 % 191285 10/13/06 2042 clb 11.6 0.10 1 % 191285 10/13/06 2042 clb | ND U T50 1000 5.00000 ug/kg 192059 10/26/06 0108 san ND U T70 1000 5.00000 ug/kg 192059 10/26/06 0108 san ND U T2 500 5.00000 ug/kg 192059 10/26/06 0108 san ND U T2 500 5.00000 ug/kg 192059 10/26/06 0108 san ND U T6 500 5.00000 ug/kg 192059 10/26/06 0108 san ND U T6 500 5.00000 ug/kg 192059 10/26/06 0108 san ND U T2 500 5.00000 ug/kg 192059 10/26/06 0108 san ND U T2 500 5.00000 ug/kg 192059 10/26/06 0108 san ND U T60 5.00000 ug/kg 192059 10/26/06 0108 san ND U | 0.10 0.0069 0.037 1 mg/Kg 191485 10/17/06 1024 daj | · Page 32 | |--|---------------------|---|--|--|--|--|-----------------------------| | ABORATORY | : GSA | Customer Sample ID: 102CSSS102 Date Sampled: 10/12/2006 Time Sampled: 12:00 Sample Matrix: Soil | RESULT a | Method % Solids Determination % Solids, Solid 88.4 88.4 % Moisture, Solid 11.6 | | 7471A Mercury (CVAA) Solids Mercury, Solid* | * In Description = Dry Wgt. | Page 32 STL Chicago is part of Severn Trent Laboratories, Inc. | | Job Number: 249132 | ABORATORY | E
S | T RESUL | S
⊢ | | Date:1 | Date:10/27/2006 | | | |---|--|---|-------------------------|---|---|--|--|--|--|--| | CUSTOMER: SCS | SCS Engineers, Inc. | PROJECT: | GSA - SI | 3L0P | | | ATTN: | David Bre | Brewer | | | Custome
Date Sa
Time Sa
Sample 1 | Customer Sample ID: 102CSSS103 Date Sampled: 10/12/2006 Time Sampled: 12:15 Sample Matrix: Soil | | Labor
Date
Time | Laboratory Sample ID:
Date Received
Time Received | D: 249132-31
.: 10/13/2006
.: 10:00 | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q FLAGS | JQW | KI | DILUTION | SLINN | ВАТСН | DT DATE/TIME | IME TECH | | 82700 | Semivolatile Organics Naphthalene, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Fluorene, 3541 Low Solid* Phenanthrene, 3541 Low Solid* Anthracene, 3541 Low Solid* Fluoranthene, 3541 Low Solid* Pyrene, 3541 Low Solid* Benzo(a)anthracene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(k)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Indeno(1,2,3~cd)pyrene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* | ND 75 62 310 3300 2200 1700 1700 1700 1700 1700 1700 17 | * 0.0 EE | % % % % % % % % % % % % % % % % % % % | 81 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83 | \$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000
\$2.00000 | 64 64 64 64 64 64 64 64 64 64 64 64 64 6 | 191987
191987
191987
191987
191987
191987
191987
191987
191987 | 10/20/86
10/20/86
10/20/86
10/20/86
10/20/86
10/20/86
10/20/86
10/20/86
10/20/86
10/20/86
10/20/86 | 1623 gtr
1623 gtr | | Method | <pre>% Solids Determination % Solids, Solid % Moisture, Solid</pre> | 91.6 | | 0.10 | 0.10 | for fam | % % | 191285 | 10/13/06
10/13/06 | 2045 clb | | 7471A | Mercury (CVAA) Solids
Mercury, Solid* | 0.15 | | 2900.0 | 0.036 | - Comm | mg/Kg | 191485 | 10/17/06 | 10/17/06 1026 daj | | 6010B | Metals Analysis (ICAP Trace)
Lead, Solid* | 2900 | | 0.25 | 0.50 | e | mg/Kg | 191568 | 10/18/06 | 10/18/06 2004 tds | | | * In Description = Dry Wgt. | | Page 33 | | | | | | | | STL Chicago is part of Severn Trent Laboratories, Inc. | | Job Number: 249132 | LABORATORY | <u>—</u>
П | T RESUL | S 1 | ************************************** | Date:10 | Date:10/27/2006 | ACCOUNTS AND ADDRESS ADDRE | ALVINE GALVATOR AND | |---
---|---|-----------------------|--|--|---|---|--|--|--| | CUSTOMER: SCS | CUSTOMER: SCS Engineers, Inc. | PROJECT: | GSA - SLOP | ОР | | | ATTN | David Brewer | | | | Custome
Date Sa
Time Sa
Sample | Customer Sample ID: 102CSSS104 Date Sampled: 10/12/2006 Time Sampled: 12:25 Sample Matrix: Soil | | Labor
Date
Time | aboratory Sample ID:
Date Received:
Time Received | 0: 249132–32
.: 10/13/2006
.: 10:00 | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q FLAGS | Ja | 4 | DILUTION | UNITS | ВАТСН | DT DATE/TIME | IME TECH | | 82700 | Semivolatile Organics Naphthalene, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Fluorene, 3541 Low Solid* Fluorene, 3541 Low Solid* Anthracene, 3541 Low Solid* Fluoranthene, 3541 Low Solid* Pyrene, 3541 Low Solid* Benzo(a)anthracene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(c)fluoranthene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)h)anthracene, 3541 Low Solid* Benzo(a)h)anthracene, 3541 Low Solid* Benzo(di)perylene, 3541 Low Solid* | 3000
8200
6300
10000
110000
120000
110000
48000
50000
17000
4000
23000 | * 55 I | 77
70
68
68
77
67
70
70
71
71
72
88
72
72
72
72
72
73 | 360
360
360
360
360
360
360
360
360
360 |
10.00000
10.00000
10.00000
10.00000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100.0000
100 | 64/69
64/69
64/69
64/69
64/69
64/69
64/69
64/69
64/69 | 191987
191987
191987
191987
191987
191987
191987
191987
191987
191987
191987
191987 | 10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/24/06
110/24/06
110/20/06
110/20/06
110/20/06 | 1725 9tr
1725 9tr
1725 9tr
1725 9tr
2010 9tr
2010 9tr
2010 9tr
1725 9tr
1725 9tr
1725 9tr
1725 9tr
1725 9tr | | Method | % Solids Determination
% Solids, Solid
% Moisture, Solid | 89.3
10.7 | | 0.10 | 0.10 | <i>-</i> | % % | 191285
191285 | 10/13/06 | 2048 clb
2048 clb | | 7471A | Mercury (CVAA) Solids
Mercury, Solid* | 0.12 | | 0.0068 | 0.037 | _ | mg/Kg | 191485 | 10/17/06 | 10/17/06 1028 daj | | 6010B | Metals Analysis (ICAP Trace)
Lead, Solid* | 2300 | | 0.27 | 0.54 | _ | mg/Kg | 191568 | 10/18/06 | 10/18/06 2009 tds | | | * In Description = Dry Wgt. | ă. | Page 34 | | | | | | | | Page 34 STL Chicago is part of Severn Trent Laboratories, Inc. | | Job Number: 249132 | ABORATORY | T E S | T RESUL | S | | Date:10 | Date:10/27/2006 | | | |---|--|--|---|--|---|--|--|--|--|--| | CUSTOMER: SCS | SCS Engineers, Inc. | PROJECT: | GSA - SL | SLOP | | | ATTN: | David Brewer | Wer | | | Custome
Date Sa
Time Sa
Sample | Customer Sample ID: 102CSSS105 Date Sampled: 10/12/2006 Time Sampled: 12:45 Sample Matrix: Soil | | Labor
Date
Time | Laboratory Sample ID:
Date Received | D: 249132-33
.: 10/13/2006
.: 10:00 | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | a FLAGS | MDL | RL. | DILUTION | UNITS | BATCH D | DT DATE/TIME | ЕТЕСН | | 8270¢ | Semivolatile Organics Naphthalene, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Fluorene, 3541 Low Solid* Phenanthrene, 3541 Low Solid* Anthracene, 3541 Low Solid* Fluoranthene, 3541 Low Solid* Pyrene, 3541 Low Solid* Benzo(a)anthracene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* Benzo(a,h)anthracene, 3541 Low Solid* | ND 3.1
2.4
2.4
2.5
2.5
2.0
2.5
2.0
5.10
5.10
5.10
5.10
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6. | * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 777776
27776
27776
27776
27776 | 33 33 33 33 33 33 33 33 33 33 33 33 33 |
1.00000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.0000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000 | 60 00 00 00 00 00 00 00 00 00 00 00 00 0 | 191987
191987
191987
191987
191988
191988
191987
191987
191987
191987 | 10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06 | 1746 911
1746 911 | | Method | % Solids Determination
% Solids, Solid
% Moisture, Solid | 88.8
11.2 | | 0.10 | 0.10 | ~ ~ | % % | 191285 | 10/13/06 2 | 2051 clb
2051 clb | | 6010B | Metals Analysis (ICAP Trace)
Arsenic, Solid*
Copper, Solid*
Silver, Solid* | 2.7
27
0.97 | | 0.38
0.22
0.10 | 1.0 | ₽~ ₽ ~ | mg/Kg
mg/Kg
mg/Kg | 191568
191568
191568 | 10/18/06 2
10/18/06 2
10/18/06 2 | 2013 tds
2013 tds
2013 tds | | | * In Description = Dry Wgt. | ă ă | Page 35 | | | | | | | | Page 35 STL Chicago is part of Severn Trent Laboratories, Inc. | CUSTOMER: SCS | Job Number: 249132
SCS.Engineers, Inc. | ABORATORY PROJECT: | TEST
GSA - SLOP | T RESUL | 8 | | Date:10 | Date:10/27/2006
ATTN: David Brewer | , L | | | |--|--|--|--------------------|---|--
--|---|--|--|--|------------| | Custome
Date Sai
Time Sai
Sample i | (合) | | | Laboratory Sample ID:
Date Received | ID: 249132-34
: 10/13/2006
: 10:00 | | | | | | | | TEST METHOD | PARAMETER/TEST DESCRIPTION | SAMPLE RESULT | Q FLAGS | MDE | K. | DILUTION | UNITS | ВАТСН | DT DATE/TIME | | TECH | | 8270c | Semivolatile Organics Naphthalene, 3541 Low Solid* Acenaphthylene, 3541 Low Solid* Acenaphthene, 3541 Low Solid* Fluorene, 3541 Low Solid* Phenanthrene, 3541 Low Solid* Anthracene, 3541 Low Solid* Fluoranthene, 3541 Low Solid* Pyrene, 3541 Low Solid* Pyrene, 3541 Low Solid* Benzo(a)anthracene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Benzo(b)fluoranthene, 3541 Low Solid* Indeno(1,2,3-cd)pyrene, 3541 Low Solid* Dibenzo(a,h)anthracene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)pyrene, 3541 Low Solid* Benzo(a)h)anthracene, 3541 Low Solid* Benzo(a)h)anthracene, 3541 Low Solid* | 42
61
870
660
11000
13000
13000
7300
6700
7300
6200
3800
920
4800 | # EE | 522 33 33 34 44 45 45 45 45 45 45 45 45 45 45 45 45 | 071
071
071
071
071
071
071
071 | 5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000 | 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % | 191987
191987
191987
191987
191987
191987
191987
191987
191987 | 10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06
10/20/06 | 1807
1807
1807
1807
1807
1807
1807
1807 | | | Method | % Solids Determination
% Solids, Solid
% Moisture, Solid | 93.4 | | 0.10 | 0.10 | how how | × × | 191285
191285 | 10/13/06
10/13/06 | 2053 | 913
913 | | 7471A | Mercury (CVAA) Solids
Mercury, Solid* | 0.87 | | 0.065 | 0.35 | 10 | mg/Kg | 191485 | 10/17/0 | 10/17/06 1050 daj | Jaj | | 60108 | Metals Analysis (ICAP Trace)
Lead, Solid* | 1300 | | 0.24 | 0.49 | - | mg/Kg | 191568 | 10/18/0 | 10/18/06 2018 tds | tds. | | , who have the same that s | * In Description = Dry Wgt. | <u> </u> | Page 36 | | The state of s | The state of s | | | | - | | Page 36 STL Chicago is part of Severn Trent Laboratories, Inc. | | | | E TECH | 2056 ctb
2056 ctb | 0140 san
0140 san | 044 daj | | |--------------------|---------------------|---|----------------------------|--|---|-------------------|-----------------------------| | | ver. | | r DATE/TIME | 10/13/06 | 10/26/06
10/26/06
10/26/06
10/26/06
10/26/06
10/26/06
10/26/06
10/26/06 | 10/17/06 1044 daj | | | Date:10/27/2006 | David Brewer | | ВАТСН ОТ | 191285
191285 | 192059
192059
192059
192059
192059
192059
192059
192059
192059 | 191485 | | | Date:1 | ATTN: | | UNITS | % % | 8 / 6 n n n n n n n n n n n n n n n n n n | mg/Kg | | | | | | DILUTION | | 5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000
5.00000 | | | | s
⊢ | | ID: 249132-35
: 10/13/2006
: 10:00 | K | 0.10
0.10 | 1000
500
500
500
1200
1000
1000
1000 | 0.033 | | | STRESUL | SLOP | Laboratory Sample
Date Received
Time Received | MDF | 0,10
0,10 | 150
170
170
25
25
28
28
20
130
150
160 | 0.0061 | | | ⊢ | GSA - SI | Lal
Da:
Ti | Q FLAGS | | 2222222222 | | Page 37 | | ABORATOR) | PROJECT | | SAMPLE RESULT | 99.8
0.20 | <u> </u> | 0.086 | | | Job Number: 249132 | SCS Engineers, Inc. | Customer Sample ID: 102CSSS107 Date Sampled: 10/12/2006 Time Sampled: 13:05 Sample Matrix: Soil | PARAMETER/TEST DESCRIPTION | % Solids Determination
% Solids, Solid
% Moisture, Solid | Explosives by 8330 (HPLC) HMX, Solid RDX, Solid 1,3,5-Trinitrobenzene, Solid 1,3-Dinitrobenzene, Solid Nitrobenzene, Solid 2,4,6-TNT, Solid 2,4-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2,6-Dinitrotoluene, Solid 2-Amino-4,6-Dinitrotoluene, Solid 4-Amino-2,6-Dinitrotoluene, Solid 2-Nitrotoluene, Solid 4-Nitrotoluene, Solid 3-Nitrotoluene, Solid | Mercury, Solid* | ★ In Description = Dry Wgt. | | - 7 | CUSTOMER: SCS E | Customer
Date Samp
Time Samp
Sample Ma | TEST METHOD | Method | 8330 | 7471A | | Page 37 STL Chicago is part of Severn Trent Laboratories, Inc. | LABORATORY TEST RESULTS Job Number: 249132 Date:10/27/2006 SCS. Engineers, Inc. ATTN: David Brewer | Laboratory Sample ID: 249132-36
2/2006
Date Received: 10/13/2006
O Time Received: 10:00 | PARAMETER/TEST DESCRIPTION SAMPLE RESULT Q FLAGS MDL DILUTION UNITS BATCH DATE/TIME TECH | Semivolatile Organics 24 J a* 7.0 35 1.00000 ug/kg 191987 10/20/06 1828 glr Naphthalene, 3541 Low Solid* 59 4.0 5.0 35 1.00000 ug/kg 191987 10/20/06 1828 glr Acenaphthylene, 3541 Low Solid* 210 6.9 35 1.00000 ug/kg 191987 10/20/06 1828 glr Fluorene, 3541 Low Solid* 2800 6.7 35 1.00000 ug/kg 191987 10/20/06 1828 glr Anthracene, 3541 Low Solid* 2800 6.7 35 1.00000 ug/kg 191987 10/20/06 1828 glr Pyrene, 3541 Low Solid* 350 1.00000 ug/kg 191987 11/22/06 1828 glr Pyrene, 3541 Low Solid* 270 6.9 350 1.00000 ug/kg 191987 11/22/06 1828 glr Benzo(a) anthracene, 3541 Low Solid* 250 6.9 35 1.00000 ug/kg 191987 10/20/06 1828 glr Benzo(b) fucranthene, 3541 Low Solid* 250 1.00000 ug/kg 19987 10/20/06 18 | % Solids Determination 91.1 0.10 0.10 1 % 191285 10/13/06 2059 clb % Noisture, Solid 8.9 0.10 0.10 1 % 191285 clb | Metals Analysis (ICAP Trace) Arsenic, Solid* Lead, Solid* 1.1 | * In Description = Dry Wgt. | |--|--|--|--
---|--|-----------------------------| | Job Number | Customer Sample ID: 102c
Date Sampled 10/1,
Time Sampled 13:3
Sample Matrix Soil | TEST METHOD | 8270c Semivolat Naphthale Acenaphth Acenaphth Fluorene, Phenanthr Anthracer Fluorene, 3 Benzo(a)a (chrysene, 1 Benzo(b)f Benzo(k)f | Method % Solids % Solids, % Solids, % Moistur | 6010B Metals Ar
Arsenic,
Lead, Sol | * In | Page 38 ## LABORATORY CHRONICLE Job Number: 249132 Date: 10/27/2006 | | | | | | | ,, | | | |--------------------------------------|---|----------------------|-------------------------------|-------------------------------|----------------|--|----------------|----------------| | CUSTOMER: SCS Eng | ineers, Inc. PROJEC | T: GSA - | SLOP | | , | ATTN: David Brev | ver | | | Lab ID: 249132-1
METHOD | Client ID: 102FLOOR2WS101 DESCRIPTION | RUN# | cvd: 10/
BATCH# | 13/2006
PREP BT | Sample
#(S) | Date: 10/11/200
DATE/TIME ANA | | DILUTION | | EDD
3550B
8082 | Electronic Data Deliverable Extraction Ultrasonic (PCBs) PCB Analysis | 1
1
1 | 191290
192097 | 191290 | | 10/15/2006
10/16/2006 | 1045
2200 | 1.00000 | | Lab ID: 249132-2
METHOD | Client ID: 102FL00R2WS102 DESCRIPTION | RUN# | BATCH# | 13/2006
PREP BT | | Date: 10/11/200
DATE/TIME AN/ | ALYZED | DILUTION | | 3550B
8082 | Extraction Ultrasonic (PCBs) PCB Analysis | 1
1 | 191290
192097 | 191290 | | 10/15/2006
10/16/2006 | 1045
2230 | 10.0000 | | Lab ID: 249132-3
METHOD
3550B | Client ID: 102FLOOR2WS103 DESCRIPTION Extraction Ultrasonic (PCBs) | RUN#
1 | BATCH#
191290 | PREP BT | | Date: 10/11/200
DATE/TIME ANA
10/15/2006 | ALYZED
1045 | DILUTION | | 8082 | PCB Analysis | 1 | | 191290 | | 10/16/2006 | 2331 | 1.00000 | | Lab ID: 249132-4
METHOD
3550B | Client ID: 102FLOOR2WS104 DESCRIPTION Extraction Ultrasonic (PCBs) | | | | | Date: 10/11/200
DATE/TIME ANA
10/15/2006 | | DILUTION | | 8082 | PCB Analysis | i | | 191290 | | 10/17/2006 | 0001 | 1.00000 | | Lab ID: 249132-5
METHOD
3550B | Client ID: 102FL00R2WS105 DESCRIPTION Extraction Ultrasonic (PCBs) | | | '13/2006
PREP BT | | Date: 10/11/200
DATE/TIME ANA
10/15/2006 | | DILUTION | | 8082 | PCB Analysis | 1 | | 191290 | | 10/13/2006 | 0031 | 10.0000 | | Lab ID: 249132-6
METHOD
3550B | Client ID: 102FLOOR2WS106 DESCRIPTION Extraction Ultrasonic (PCBs) | Date Re
RUN#
1 | ecvd: 10/
BATCH#
191290 | 13/2006
PREP BT | Sample
#(S) | Date: 10/11/200
DATE/TIME AND
10/15/2006 | | DILUTION | | 8082 | PCB Analysis | 1 | 192097 | 191290 | | 10/17/2006 | 0141 | 1.00000 | | Lab ID: 249132-7
METHOD
3550B | Client ID: 102FL00R2WS107 DESCRIPTION Extraction Ultrasonic (PCBs) | Date Re
RUN#
1 | BATCH#
191290 | PREP BT | Sample
#(S) | Date: 10/11/200
DATE/TIME ANA
10/15/2006 | ALYZED
1045 | DILUTION | | 8082 | PCB Analysis | 1 | 192097 | 191290 | | 10/17/2006 | 0211 | 1.00000 | | Lab ID: 249132-8
METHOD
3550B | Client ID: 102FLOOR2WS108 DESCRIPTION Extraction Ultrasonic (PCBs) | | | 13/2006
PREP BT | | Date: 10/11/200
DATE/TIME ANA
10/15/2006 | | DILUTION | | 8082 | PCB Analysis | 1 | | 191290 | | 10/17/2006 | 0242 | 10.0000 | | Lab ID: 249132-9
METHOD
3550B | Client ID: 102FLOOR2WS109 DESCRIPTION Extraction Ultrasonic (PCBs) | Date Re
RUN#
1 | ecvd: 10/
BATCH#
191290 | '13/2006
PREP BT | Sample
#(S) | Date: 10/11/200
DATE/TIME AND
10/15/2006 | | DILUTION | | 8082 | PCB Analysis | 1 | | 191290 | | 10/17/2006 | 0342 | 1.00000 | | Lab ID: 249132-10
METHOD | DESCRIPTION | RUN# | BATCH# | 13/2006
PREP BT | • | Date: 10/11/200
DATE/TIME ANA | ALYZED | DILUTION | | 3550B
8082 | Extraction Ultrasonic (PCBs)
PCB Analysis | 1 | 191290
192097 | 191290 | | 10/15/2006
10/17/2006 | 1045
0413 | 1.00000 | | Lab ID: 249132-11
METHOD
7471A | DESCRIPTION Mercury (CVAA) Solids | RUN#
1 | BATCH#
191932 | '13/2006
PREP BT
192015 | | | ALYZED
1504 | DILUTION | | 7470/7471 | SW846 Digestion (Hg) | 1 | 192015 | (A.Z. (D.C.) | | , , | 1115 | | | Lab ID: 249132-12
METHOD
7471A | Client ID: 102FLOOR2PC111
DESCRIPTION
Mercury (CVAA) Solids | | BATCH# | 13/2006
PREP BT
191484 | | Date: 10/12/200
DATE/TIME ANA
10/17/2006 | | DILUTION
50 | | job | L A B O R
Number: 249132 | ATORY CHRONICLE Date: 10/27/2006 | |---|--|---| | CUSTOMER: SCS Eng | ineers, Inc. | PROJECT: GSA - SLOP ATTN: David Brewer | | METHOD | Client ID: 102FL00R2PC111
DESCRIPTION
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191484 10/17/2006 0600 | | METHOD
7471A | Client ID: 102FL00R2WS112
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191932 192015 10/19/2006 1506 1 192015 10/19/2006 1115 | | METHOD
7471A | Client ID: 102FL00R2PC112
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191485 191484 10/17/2006 1001 20 1 191484 10/17/2006 0600 | | METHOD
7471A | Client ID: 102FLOOR1WS113 DESCRIPTION Mercury (CVAA) Solids SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 191932 192015 10/19/2006 1508
1 192015 10/19/2006 1115 | | METHOD
7471A | Client ID: 102FL00R1PC113 DESCRIPTION Mercury (CVAA) Solids SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191485 191484 10/17/2006 1003 20 1 191484 10/17/2006 0600 | | METHOD
7471A | Client ID: 102FL00R1WS114 DESCRIPTION Mercury (CVAA) Solids SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 191932 192015 10/19/2006 1535 10
1 192015 10/19/2006 1115 | | METHOD | Client ID: 102FL00R1PC114
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 191485 191484 10/17/2006 1005 100
1 191484 10/17/2006 0600 | | METHOD
7471A | Client ID: 102DFLOOR2WS115
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191932 192015 10/19/2006 1517
1 192015 10/19/2006 1115 | | Lab ID: 249132-20
METHOD
7471A
7470/7471 | Client ID: 102DFLOOR2PC115
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 191485 191484 10/17/2006 1007 10
1 191484 10/17/2006 0600 | | Lab ID: 249132-21
METHOD
7471A
7470/7471 | Client ID: 102DFLOOR1WS116
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION
1 191932 192015 10/19/2006 1519
1 192015 10/19/2006 1115 | | METHOD | Client ID: 102DFLOOR1PC116 DESCRIPTION Mercury (CVAA) Solids SW846 Digestion (Hg) | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191485 191484 10/17/2006 1014 50 1 191484 10/17/2006 0600 | | · | Client ID: 102DFLOOR1WS117
DESCRIPTION
Mercury (CVAA) Solids | Date Recvd: 10/13/2006 Sample Date: 10/12/2006
RUN# BATCH# PREP BT #(S) DATE/TIME ANALYZED DILUTION 1 191932 192015 10/19/2006 1521 | | Job | L A B
Number: 249132 | ORATORY CH | RONICLE | | 10/27/2006 | | |---|--|-------------------------------|---|---------------------------|--|---------------------| | CUSTOMER: SCS Eng | ineers, Inc. | PROJECT: GSA - | SLOP | , | ATTN: David Brewer | | | Lab ID: 249132-23
METHOD
7470/7471 | Client ID: 102DFLOOR1WS117
DESCRIPTION
SW846 Digestion (Hg) | | cvd: 10/13/20
BATCH# PREP
192015 | | Date: 10/12/2006
DATE/TIME ANALYZED
10/19/2006 1115 | DILUTION | | Lab ID: 249132-24
METHOD
7471A
7470/7471 | Client ID: 102DFLOOR1PC117
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | | cvd: 10/13/20
BATCH# PREP
191485 1914
191484 | BT #(S) | Date: 10/12/2006
DATE/TIME ANALYZED
10/17/2006 1016
10/17/2006 0600 | DILUTION
100 | | Lab ID: 249132-25
METHOD
7471A
7470/7471 | Client ID: 102EFLOOR2WS118 DESCRIPTION Mercury (CVAA) Solids SW846 Digestion (Hg) | | cvd: 10/13/20
BATCH# PREF
191932 1920
192015 | BT #(S) | Date: 10/12/2006
DATE/TIME ANALYZED
10/19/2006 1523
10/19/2006 1115 | DILUTION | | Lab ID: 249132-26
METHOD
7471A
7470/7471 | Client ID: 102EFLOOR2PC118 DESCRIPTION Mercury (CVAA) Solids SW846
Digestion (Hg) | | cvd: 10/13/20
BATCH# PREP
191485 1914
191484 | BT #(S) | Date: 10/12/2006
DATE/TIME ANALYZED
10/17/2006 1018
10/17/2006 0600 | DILUTION
10 | | METHOD | Client ID: 102EFLOOR1WS119
DESCRIPTION
Mercury (CVAA) Solids
SW846 Digestion (Hg) | | cvd: 10/13/20
BATCH# PREP
191932 1920
192015 | BT #(S) | Date: 10/12/2006
DATE/TIME ANALYZED
10/19/2006 1526
10/19/2006 1115 | DILUTION | | Lab ID: 249132-28
METHOD
7471A
7470/7471 | Client ID: 102EFLOOR1PC119 DESCRIPTION Mercury (CVAA) Solids SW846 Digestion (Hg) | Date Re
RUN#
1
1 | cvd: 10/13/20
BATCH# PREP
191485 1914
191484 | BT #(S) | Date: 10/12/2006
DATE/TIME ANALYZED
10/17/2006 1020
10/17/2006 0600 | DILUTION
50 | | Lab ID: 249132-29
METHOD
Method
3050B
7471A
6010B
7470/7471 | Client ID: 102CSSS101 DESCRIPTION % Solids Determination Acid Digestion: Solids (ICAP) Mercury (CVAA) Solids Metals Analysis (ICAP Trace) SW846 Digestion (Hg) | | cvd: 10/13/20
BATCH# PREP
191285 1912
191439
191485 1914
191568 1914 | BT #(S)
85
84 | Date: 10/12/2006 DATE/TIME ANALYZED 10/13/2006 2039 10/17/2006 1920 10/17/2006 1022 10/18/2006 2000 10/17/2006 0600 | DILUTION | | METHOD
Method | Client ID: 102CSSS102 DESCRIPTION % Solids Determination | RUN#
1 | cvd: 10/13/20
BATCH# PREP
191285 1912 | BT #(S) | Date: 10/12/2006
DATE/TIME ANALYZED
10/13/2006 2042 | DILUTION | | 8330
8330
7471A
7470/7471 | 8330 Extraction (Explosives) Explosives by 8330 (HPLC) Mercury (CVAA) Solids SW846 Digestion (Hg) | 1
1
1 | 191908
192059 1919
191485 1914
191484 | | 10/24/2006 1415
10/26/2006 0108
10/17/2006 1024
10/17/2006 0600 | 5.00000 | | Lab ID: 249132-31
METHOD
Method
3050B
3541
7471A
6010B
7470/7471 | DESCRIPTION % Solids Determination Acid Digestion: Solids (ICAP) Extraction Soxhlet (SVOC) Mercury (CVAA) Solids Metals Analysis (ICAP Trace) SW846 Digestion (Hg) | RUN#
1
1
1
1
1 | 191285 1912
191439
191434
191485 1914
191568 1914
191484 | 8T #(S)
85
84
39 | Date: 10/12/2006 DATE/TIME ANALYZED 10/13/2006 2045 10/17/2006 1920 10/17/2006 1730 10/17/2006 1026 10/18/2006 2004 10/17/2006 0600 | DILUTION | | 8270C
Lab ID: 249132-32
METHOD
Method | Semivolatile Organics Client ID: 102CSSS104 DESCRIPTION % Solids Determination | | 191987 1914
cvd: 10/13/20
BATCH# PREP
191285 1912 | 06 Sample
BT #(S) | 10/20/2006 1623 Date: 10/12/2006 DATE/TIME ANALYZED 10/13/2006 2048 | 5.00000
DILUTION | | Job | Number: 249132 | LABORATORY | C H | RONI | CLE | Date: | 10/27/2006 | | | |--------------------|---|------------|---------|-----------|--------------------|--------|-------------------------------|--------------|----------| | CUSTOMER: SCS Eng | ineers, Inc. | PROJECT: | GSA - | SLOP | | | ATTN: David Br | ewer | | | Lab ID: 249132-32 | | | | ecvd: 10/ | 13/2006
PREP BT | | Date: 10/12/20
DATE/TIME A | | DILUTION | | METHOD
3050B | DESCRIPTION Acid Digestion: Solids | (TCAP) | 1 | 191439 | rker bi | #(3) | 10/17/2006 | 1920 | DILOTIO | | 3541 | Extraction Soxhlet (SVO | | 1 | 191434 | | | 10/17/2006 | 1730 | | | 7471A | Mercury (CVAA) Solids | C7 | 1 | 191485 | 191484 | | 10/17/2006 | 1028 | | | 6010B | Metals Analysis (ICAP T | race) | 1 | 191568 | | | 10/18/2006 | 2009 | | | 7470/7471 | SW846 Digestion (Hg) | 1 400) | 1 | 191484 | 17 (14) | | 10/17/2006 | 0600 | | | 8270c | Semivolatile Organics | | 1 | | 191434 | | 10/20/2006 | 1725 | 10.0000 | | 8270c | Semivolatile Organics | | 1 | | 191434 | | 10/24/2006 | 2010 | 100.000 | | _ab ID: 249132-33 | Client ID: 102CSSS105 | | | cvd: 10/ | | | Date: 10/12/2 | | | | METHOD | DESCRIPTION | | RUN# | | PREP BT | #(S) | DATE/TIME A | | DILUTIO | | Method | % Solids Determination | | 1 | | 191285 | | 10/13/2006 | 2051 | | | 3050B | Acid Digestion: Solids | | 1 | 191439 | | | 10/17/2006 | 1920 | | | 3541 | Extraction Soxhlet (SVO | | 1 | 191434 | | | 10/17/2006 | 1730 | | | 6010B | Metals Analysis (ICAP T | race) | 1 | | 191439 | | 10/18/2006 | 2013 | | | 8270c | Semivolatile Organics | | 1 | 191987 | 191434 | | 10/20/2006 | 1746 | 1.00000 | | ab ID: 249132-34 | | | | | 13/2006 | | Date: 10/12/2 | | | | METHOD | DESCRIPTION | | | | PREP BT | #(S) | DATE/TIME A | | DILUTIO | | Method | % Solids Determination | | 1 | 191285 | 191285 | | 10/13/2006 | 2053 | | | 3050B | Acid Digestion: Solids | | 1 | 191439 | | | 10/17/2006 | 1920 | | | 3541 | Extraction Soxhlet (SVO | () | 1 | 191434 | 404707 | | 10/17/2006 | 1730 | 10 | | 7471A | Mercury (CVAA) Solids | | 1 | | 191484 | | 10/17/2006 | 1050
2018 | 10 | | 6010B | Metals Analysis (ICAP T | race) | 1 | | 191439 | | 10/18/2006 | 0600 | | | 7470/7471 | SW846 Digestion (Hg) | | 1 | 191484 | 404/7/ | | 10/17/2006 | | 5.00000 | | 8270c | Semivolatile Organics | | 1 | | 191434 | | 10/20/2006 | 1807
2035 | 10,0000 | | 8270c | Semivolatile Organics | | 1 | 191987 | 191434 | | 10/24/2006 | 2035 | 10,0000 | | ab ID: 249132-35 | | | | cvd: 10/ | | | Date: 10/12/2
DATE/TIME A | | DILUTIC | | METHOD | DESCRIPTION | | | | PREP BT | #(5) | 10/13/2006 | 2056 | DIFOIT | | Method | % Solids Determination | 2 | 1 | 191908 | 191285 | | | 1415 | | | 8330 | 8330 Extraction (Explos | ives) | 1 | | 191908 | | 10/24/2006
10/26/2006 | 0140 | 5,00000 | | 8330 | Explosives by 8330 (HPL | C) | 1 | | 191484 | | 10/26/2006 | 1044 | ٥,0000 | | 7471a
7470/7471 | Mercury (CVAA) Solids
SW846 Digestion (Hg) | | 1 | 191484 | 171404 | | 10/17/2006 | 0600 | | | .ab ID: 249132-36 | Client ID: 102CSSS108 | | Date Re | cvd: 10/ | 13/2006 | Sample | Date: 10/12/2 | 006 | | | METHOD | DESCRIPTION | | RUN# | BATCH# | PREP BT | #(S) | DATE/TIME A | NALYZED | DILUTIO | | Method | % Solids Determination | | 1 | 191285 | 191285 | | 10/13/2006 | 2059 | | | 3050B | Acid Digestion: Solids | (ICAP) | 1 | 191439 | | | 10/17/2006 | 1920 | | | 3541 | Extraction Soxhlet (SVO | c) | 1 | 191434 | | | 10/17/2006 | 1730 | | | 6010B | Metals Analysis (ICAP T | race) | 1 | 191568 | 191439 | | 10/18/2006 | 2043 | | | 8270c | Semivolatile Organics | | 1 | | 191434 | | 10/20/2006 | 1828 | 1.00000 | | 8270c | Semivolatile Organics | | 1 | 191987 | 191434 | | 10/24/2006 | 2100 | 10.0000 | | | - | | | | | | · · | STL Chicago is part of Severn Trent Laboratories, Inc. SURROGATE RECOVERIES REPORT Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA — SLOP ATTN: David Brewer | | hod
hod Code. | : PCB Analysis
: 8082 | | | : Wipe
: 192097 | Prep Batch: 191290 | |------------|------------------|---|------------|-----|--------------------|--------------------| | Lab ID | DT | Sample ID | Date | DCB | тсх | | | LCD | | ALL AND ALL AND | 10/16/2006 | 85 | 92 | | | LCS | | | 10/16/2006 | 89 | 94 | | | MB | | | 10/16/2006 | 87 | 87 | | | 249132- 1 | | 102FL00R2WS101 | 10/16/2006 | 85 | 91 | | | 249132- 2 | | 102FL00R2WS102 | 10/16/2006 | 106 | 91 | | | 249132- 3 | | 102FL00R2WS103 | 10/16/2006 | 85 | 88 | | | 249132- 4 | | 102FL00R2WS104 | 10/17/2006 | 87 | 92 | | | 249132- 5 | | 102FL00R2WS105 | 10/17/2006 | 110 | 86 | | | 249132- 6 | | 102FL00R2WS106 | 10/17/2006 | 83 | 84 | | | 249132- 7 | | 102FLOOR2WS107 | 10/17/2006 | 88 | 91 | | | 249132~ 8 | | 102FL00R2WS108 | 10/17/2006 | 106 | 92 | | | 249132- 9 | | 102FL00R2WS109 | 10/17/2006 | 89 | 92
89 | | | 249132- 10 | | 102FLOOR2WS110 | 10/17/2006 | 87 | 89 | | | Test | Test Des | scription | Limits | | | | | DCB | Decachlo | probiphenyl (surr) | 56 - 178 | | | | | TCX | | orommenyt (surr) | 58 - 119 | | | | STL Chicago is part of Severn Trent Laboratories, Inc. Job Number.: 249132 S U R R O G A T E R E C O V E R I E S R E P O R T Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer | | | | : Semivolatile Organics
: 8270 | | Test M
Batch | | | | | Low Solid
87 | Prep Batch: 191434 | |------------|-------|------|-----------------------------------|----------|-----------------|----|------|----|------|-----------------|--------------------| | Lab ID | | DT | Sample ID | Date | è | 2F | LUBP | NI | TRD5 | TERD14 | | | _cs | | | | 10/18/2 | 2006 | | 62 | | 21* | 95 | | | 1B | | | | 10/18/2 | | | 78 | | 82 | 88 | | | 249132- 31 | | | 102csss103 | 10/20/2 | | | 73 | | 35 | 90 | | | 249132- 31 | | | 102csss103 | 10/20/2 | | | 80 | | 73 | 95 | | | 249132- 31 | MSD | | 102csss103 | 10/20/2 | | | 81 | | 69 | 98 | | | 249132- 32 | | | 102csss104 | 10/20/2 | | | 84 | | 56 | 115 | | | 249132- 32 | | D1 | 102csss104 | 10/24/2 | | 0 | D | 0 | D | 0 D | | | 249132- 33 | | | 102csss105 | 10/20/2 | 2006 | | 52 | | 26* | 87 | | | 249132- 34 | | | 102csss106 | 10/20/2 | 2006 | | 78 | | 56 | 96 | | | 249132- 34 | | D1 | 102csss106 | 10/24/2 | 2006 | | 90 | | 64 | 120* | | | 249132- 36 | | | 102csss108 | 10/20/2 | 2006 | | 56 | | 53 | 84 | | | 249132- 36 | | D1 | 102csss108 | 10/24/2 | 2006 | | 79 | | 67 | 115 | | | Test | Test | Des | cription | Limits | | | | | | | | | FLUBP | 2-FL | ioro | biphenyl (surr) | 44 - 103 | | | | | | | | | ITRD5 | Nitro | ben | zene-d5 (surr) | 34 - 100 | | | | | | | | | TERD14 | Terpi | eny | t-d14 (surr) | 41 - 116 | | | | | | | | STL Chicago is part of Severn Trent Laboratories, Inc. SURROGATE RECOVERIES REPORT Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer | | hod
hod Code. | : Explosives by 8330 (HP: 8330 | | st Matrix: Solid
cch(s): 192059 | Prep Batch: 191908 | |---------------------------------------|-------------------|--------------------------------|--|------------------------------------|--------------------| | Lab ID | TQ | Sample ID | Date | 12DNBZ | | | LCS
MB
249132-
30
249132- 35 | | 102csss102
102csss107 | 10/26/200
10/26/200
10/26/200
10/26/200 | 06 97
06 116 | | | Test | 32- 35 102csss107 | | Limits | | | | 12DNBZ | 1,2-Dini | trobenzene (surr) | 80 - 121 | | | Lab ID Dilution Factor Date Time Job Number.: 249132 Report Date.: 10/27/2006 Reag. Code CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Test Method.....: 8082 Analyst...: bjt Method Description.: PCB Analysis Description QC Type | LCD Laboratory Control Sam | ple Duplicat | e 06JI | ILPCBA | 191290-003 | | 10 | /16/2006 2130 | |----------------------------|--------------|-----------|-----------|------------|-------------|----------|------------------| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | * Limits F | | Aroclor 1016, Wipe | ug/Wipe | 4.378400 | 4.527000 | 5.001000 | 0.320000 U | 88 | % 62-108
R 30 | | Aroclor 1260, Wipe | ug/Wipe | 4.431800 | 4.594500 | 5,010000 | 0.320000 U | 88
4 | % 67-115
R 30 | Job Number.: 249132 QUALITY CONTROL RESULTS Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP QC Type Description Reag. Code Lab ID Dilution Factor Date Time Test Method.....: 8082 Equipment Code...: INST3738 Analyst...: bjt Method Description: PCB Analysis Batch.....: 192097 LCS Laboratory Control Sample O6JWLPCBA 191290-002 10/16/2006 2059 Units QC Result QC Result True Value Orig. Value QC Calc. * Limits Parameter/Test Description Aroclor 1016, Wipe Aroclor 1260, Wipe ug/Wipe ug/Wipe 0.320000 U 91 % 4.527000 5.001000 62-108 5.010000 0.320000 U 92 % 67-115 4.594500 Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: QC Type Description Reag. Code Lab ID Dilution Factor Date Time Equipment Code....: INST3738 Analyst...: bjt Test Method.....: 8082 Method Description.: PCB Analysis Batch..... 192097 | MB Method Blank | | | | 191290-001 | | | 10 | /16/ | 2006 202 | 29 | |----------------------------|---------|------------|-----------|------------|----------|-----|----------|------|--|----| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Va | lue | QC Calc. | * | Limits | F | | Aroclor 1016, Wipe | ug/Wipe | 0.320000 U | | M | | | | | American de la constitución l | | | Aroclor 1221, Wipe | ug/Wipe | 0.320000 U | | | | | | | | | | Aroclor 1232, Wipe | ug/Wipe | 0.320000 U | | | | | | | | | | Aroclor 1242, Wipe | ug/Wipe | 0.320000 U | | | | | | | | | | Aroclor 1248, Wipe | ug/Wipe | 0.320000 U | | | | | | | | | | Aroclor 1254, Wipe | ug/Wipe | 0.320000 U | | | | | | | | | | Aroclor 1260, Wipe | ug/Wipe | 0.320000 ป | | | | | | | | | Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: Description QC Type Dilution Factor Date Time Test Method.....: 8330 Reag. Code Lab ID Analyst...: san Method Description.: Explosives by 8330 (HPLC) Equipment Code...: INST3536 Batch....: 192059 | LCS Laboratory Control Same | ple | 006 | JWL833D | 191908-002 | | 10/26, | 2006 0035 | |-----------------------------------|-------|-----------|-----------|------------|---------------------|--------|---------------------| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value QC Calc | . * | Limits | | HMX, Solid | ug/Kg | 985.550 | | 935.000 | 30,200 U 105 | | 86-117 | | RDX, Solid | ug/Kg | 928.150 | | 940.000 | 33.300 U 99 | % | 90-115 | | 1,3,5-Trinitrobenzene, Solid | ug/Kg | 957.650 | | 925.000 | 14.400 U 104 | % | 82-125 | | 1,3-Dinitrobenzene, Solid | ug/Kg | 931.300 | | 970.000 | 5.000 U 96 | % | 86-112 | | Nitrobenzene, Solid | ug/Kg | 926.800 | | 945.000 | 16.900 U 98 | % | 90-109 | | 2,4,6-TNT, Solid | ug/Kg | 861.200 | | 935.000 | 15.200 U 92 | % | 67-152 | | Tetryl, Solid | ug/Kg | 1592.700 | | 1940.000 | 117.000 U 82 | % | 60-130 | | 2,4-Dinitrotoluene, Solid | ug/Kg | 921.500 | | 950.000 | 14.400 U 97 | % | 87-114 | | 2,6-Dinitrotoluene, Solid | ug/Kg | 1783.650 | | 1960.000 | 25.400 U 91 | % | 90-112 | | 2-Amino-4,6-Dinitrotoluene, Solid | ug/Kg | 883.500 | | 915.000 | 12.100 U 97 | % | 90-112 | | 4-Amino-2,6-Dinitrotoluene, Solid | ug/Kg | 1891.750 | | 1950.000 | 85.600 U 97 | % | 88-119 | | 2-Nitrotoluene, Solid | ug/Kg | 1797.650 | | 1925.000 | 31.800 U 93 | % | 88-114 | | 4-Nitrotoluene, Solid | ug/Kg | 1825.450 | | 1960.000 | 30.200 U 93 | % | 86-114 | | 3-Nitrotoluene, Solid | ug/Kg | 1829.550 | | 1990.000 | 32.500 U 92 | % | 8 9- 115 | Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: QC Type Description Reag. Code Dilution Factor Date Time Test Method.....: 8330 Analyst...: san Method Description.: Explosives by 8330 (HPLC) Equipment Code...: INST3536 Batch....: 192059 Lab ID | | | | | | | | | | | | .1. | | انستنت | |-----------------------------------|-------|-----------|----|-----------|------|---------|-------|-------|----|-------|-----|--------|--------| | Parameter/Test Description | Units | QC Result | | QC Result | True | e Value | Orig. | Value | QC | Calc. | * | Limits | F | | HMX, Solid | ug/Kg | 30.200 | U | | | | | | | | | | | | RDX, Solid | ug/Kg | 33.300 | U | | | | | | | | | | | | 1,3,5-Trinitrobenzene, Solid | ug/Kg | 14.400 | U | | | | | | | | | | | | 1,3-Dinitrobenzene, Solid | ug/Kg | 5.000 | U | | | | | | | | | | | | Nitrobenzene, Solid | ug/Kg | 16.900 | U | | | | | | | | | | | | 2,4,6-TNT, Solid | ug/Kg | 15.200 | U | | | | | | | | | | | | Tetryl, Solid | ug/Kg | 117.000 | U | | | | | | | | | | | | 2,4-Dinitrotoluene, Solid | ug/Kg | 14.400 | Ü | | | | | | | | | | | | 2,6-Dinitrotoluene, Solid | ug/Kg | 25.400 | U | | | | | | | | | | | | 2-Amino-4,6-Dinitrotoluene, Solid | ug/Kg | 12.100 | U | | | | | | | | | | | | 4-Amino-2,6-Dinitrotoluene, Solid | ug/Kg | 85.600 | IJ | | | | | | | | | | | | 2-Nitrotoluene, Solid | ug/Kg | 31.800 | U | | | | | | | | | | | | 4-Nitrotoluene, Solid | ug/Kg | 30.200 | U | | | | | | | | | | | | 3-Nitrotoluene, Solid | ug/Kg | 32.500 | U | | | | | | | | | | | Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: Description QC Type Dilution Factor Date Time Test Method.....: 82700 Reag. Code Lab ID Method Description.: Semivolatile Organics Equipment Code...: GCL11 Batch......191987 Analyst...: glr | LCS Laboratory Control Sample | e | 1190 | VLBLKB | 191434-002 | 10 |)/18/ | 2006 194 | 7 | |--|-------|-----------|-----------|------------|----------------------|-------|----------|--------------| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value QC Calc. | * | Limits | F | | Naphthalene, 3541 Low Solid | ug/Kg | 717.769 | | 1667.000 | 6.600 U 43 | ,- | 55-100 | * | | Acenaphthylene, 3541 Low Solid | ug/Kg | 1493.358 | | 1667.000 | 6.500 U 90 | % | 59-104 | | | Acenaphthene, 3541 Low Solid | ug/Kg | 1509.348 | | 1667,000 | 6.400 U 91 | % | 64-100 | | | Fluorene, 3541 Low Solid | ug/Kg | 1598.151 | | 1667.000 | 6.300 U 96 | % | 61-105 | | | Phenanthrene, 3541 Low Solid | ug/Kg | 1657.930 | | 1667.000 | 5.300 U 99 | % | 63-113 | | | Anthracene, 3541 Low Solid | ug/Kg | 1597.587 | | 1667.000 | 7.100 U 96 | % | 53-108 | | | Fluoranthene, 3541 Low Solid | ug/Kg | 1732.466 | | 1667.000 | 6.200 U 104 | % | 56-112 | | | Pyrene, 3541 Low Solid | ug/Kg | 1716.789 | | 1667.000 | 7.500 U 103 | % | 62-114 | | | Benzo(a)anthracene, 3541 Low Solid | ug/Kg | 1614.311 | | 1667.000 | 6.500 U 97 | % | 56-130 | | | Chrysene, 3541 Low Solid | ug/Kg | 1807.455 | | 1667.000 | 6.700 U 108 | % | 52-113 | | | Benzo(b)fluoranthene, 3541 Low Solid | ug/Kg | 1956.804 | | 1667.000 | 8.200 U 117 | % | 37-150 | | | Benzo(k)fluoranthene, 3541 Low Solid | ug/Kg | 1803.539 | | 1667.000 | 9.200 U 108 | % | 37-120 | | | Benzo(a)pyrene, 3541 Low Solid | ug/Kg | 1744.469 | | 1667.000 | 3.800 U 105 | % | 55-117 |
| | Indeno(1,2,3-cd)pyrene, 3541 Low Solid | ug/Kg | 1642.217 | | 1667.000 | 6.600 U 99 | % | 57-118 | | | Dibenzo(a,h)anthracene, 3541 Low Solid | ug/Kg | 1642.230 | | 1667.000 | 6.700 U 99 | % | 54-121 | | | Benzo(ghi)perylene, 3541 Low Solid | ug/Kg | 1636.540 | | 1667.000 | 8.900 U 98 | % | 56-128 | | Reag. Code Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: Dilution Factor Time Test Method.....: 82700 QC Type Method Description.: Semivolatile Organics Description Equipment Code...: GCL11 Lab ID Analyst...: glr Date Batch..... 191987 | MB Method Blank | | | | | 191434-001 | | | | 10/ | 18/ | 2006 173 | 52 | |--|-------|-----------|----|-----------|------------|-------|-------|-------|------|------------|----------|----| | Parameter/Test Description | Units | QC Result | | QC Result | True Value | Orig. | Value | QC Ca | alc. | * | Limits | F | | Naphthalene, 3541 Low Solid | ug/Kg | 6.600 | | | | | | | | ***** **** | | | | Acenaphthylene, 3541 Low Solid | ug/Kg | 6.500 | U | | | | | | | | | | | Acenaphthene, 3541 Low Solid | ug/Kg | 6.400 | U | | | | | | | | | | | Fluorene, 3541 Low Solid | ug/Kg | 6.300 | U | | | | | | | | | | | Phenanthrene, 3541 Low Solid | ug/Kg | 5.300 | U | | | | | | | | | | | Anthracene, 3541 Low Solid | ug/Kg | 7.100 | U | | | | | | | | | | | Fluoranthene, 3541 Low Solid | ug/Kg | 6.200 | U | | | | | | | | | | | Pyrene, 3541 Low Solid | ug/Kg | 7.500 | U | | | | | | | | | | | Benzo(a)anthracene, 3541 Low Solid | ug/Kg | 6.500 | U | | | | | | | | | | | Chrysene, 3541 Low Solid | ug/Kg | 6.700 | IJ | | | | | | | | | | | Benzo(b)fluoranthene, 3541 Low Solid | ug/Kg | 8.200 | IJ | | | | | | | | | | | Benzo(k)fluoranthene, 3541 Low Solid | ug/Kg | 9.200 | U | | | | | | | | | | | Benzo(a)pyrene, 3541 Low Solid | ug/Kg | 3.800 | U | | | | | | | | | | | Indeno(1,2,3-cd)pyrene, 3541 Low Solid | | 6.600 | U | | | | | | | | | | | Dibenzo(a,h)anthracene, 3541 Low Solid | | 6.700 | U | | | | | | | | | | | Benzo(ghi)perylene, 3541 Low Solid | ug/Kg | 8.900 | U | | | | | | | | | | Page 52 Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: Lab ID QC Type Description Reag. Code Dilution Factor Date Time Test Method.....: 82700 Method Description.: Semivolatile Organics Equipment Code...: GCL11 Batch..... 191987 Analyst...: glr | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | * | Limits | | |---------------------------------------|-------|-----------|-----------|------------|-------------|----------|-----|--------|--| | Japhthalene, 3541 Low Solid | ug/Kg | 1410.514 | | 8778.000 | 34.765 | U 80 | % - | 55-100 | | | cenaphthylene, 3541 Low Solid | ug/Kg | 1515.664 | | 8778.000 | 34.239 | U 86 | % | 59-104 | | | cenaphthene, 3541 Low Solid | ug/Kg | 1868.410 | | 8778.000 | 74.700 | J 102 | % | 64-100 | | | luorene, 3541 Low Solid | ug/Kg | 1863.723 | | 8778.000 | 61,550 | J 103 | % | 61-105 | | | henanthrene, 3541 Low Solid | ug/Kg | 5463.912 | | 8778.000 | 1497.010 | 226 | % | 63-113 | | | nthracene, 3541 Low Solid | ug/Kg | 2284.818 | | 8778.000 | 310.007 | 112 | % | 53-108 | | | luoranthene, 3541 Low Solid | ug/Kg | 7220.759 | | 8778.000 | 3831.327 | 193 | % | 56-112 | | | yrene, 3541 Low Solid | ug/Kg | 6662.576 | | 8778,000 | 2732.944 | 224 | % | 62-114 | | | Benzo(a)anthracene, 3541 Low Solid | ug/Kg | 4852.765 | | 8778.000 | 1923.858 | 167 | % | 56-130 | | | Chrysene, 3541 Low Solid | ug/Kg | 4943.771 | | 8778.000 | 1745.166 | 182 | % | 52-113 | | | enzo(b)fluoranthene, 3541 Low Solid | ug/Kg | 5016.291 | | 8778.000 | 1575.180 | 196 | % | 37-150 | | | Benzo(k)fluoranthene, 3541 Low Solid | ug/Kg | 4014.771 | | 8778.000 | 1983.505 | 116 | % | 37-120 | | | lenzo(a)pyrene, 3541 Low Solid | ug/Kg | 4395.085 | | 8778.000 | 1742.777 | 151 | % | 55-117 | | | ndeno(1,2,3-cd)pyrene, 3541 Low Solid | ug/Kg | 3340.461 | | 8778.000 | 1143.783 | 125 | % | 57~118 | | | ibenzo(a,h)anthracene, 3541 Low Solid | ug/Kg | 2227.465 | | 8778.000 | 461.067 | 101 | % | 54-121 | | | enzo(ghi)perylene, 3541 Low Solid | ug/Kg | 3825.158 | | 8778.000 | 1304.039 | 144 | % | 56-128 | | Reag. Code Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: Description QC Type Dilution Factor Date Time Test Method.....: 82700 Method Description.: Semivolatile Organics Equipment Code....: GCL11 Batch..... 191987 Lab ID Analyst...: glr | MSD Matrix Spike Duplicate | | 06.11 | VLBLKB | 249132-31 | 5,00000 | 10 | /20/2006 170 | 5 | |--|-------|-----------|-----------|------------|------------|-----------------|--------------------------|--------| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Valu | e QC Calc. | * Limits | F | | Naphthalene, 3541 Low Solid | ug/Kg | 1373.663 | 1410.514 | 9017.000 | 35.702 | U 76 | % 55-100 | | | Acenaphthylene, 3541 Low Solid | ug/Kg | 1544.388 | 1515.664 | 9017.000 | 35.161 | 0 86
0 | R 30
% 59-104
R 30 | | | Acenaphthene, 3541 Low Solid | ug/Kg | 1725.900 | 1868.410 | 9017.000 | 74.700 | J 92 | % 64-100 | | | Fluorene, 3541 Low Solid | ug/Kg | 1754.810 | 1863.723 | 9017.000 | 61.550 | 10
J 94
9 | R 30
% 61-105
R 30 | | | Phenanthrene, 3541 Low Solid | ug/Kg | 4112.347 | 5463.912 | 9017.000 | 1497.010 | 145 | % 63-113 | *
* | | Anthracene, 3541 Low Solid | ug/Kg | 2215.277 | 2284.818 | 9017.000 | 310.007 | 44
106
6 | R 30
% 53-108
R 30 | ж | | Fluoranthene, 3541 Low Solid | ug/Kg | 6676.958 | 7220,759 | 9017.000 | 3831.327 | 158
20 | % 56-112
R 30 | * | | Pyrene, 3541 Low Solid | ug/Kg | 5827.456 | 6662.576 | 9017.000 | 2732.944 | 172
26 | % 62-114
R 30 | * | | Benzo(a)anthracene, 3541 Low Solid | ug/Kg | 4592.949 | 4852.765 | 9017.000 | 1923.858 | 148
12 | % 56-130
R 30 | * | | Chrysene, 3541 Low Solid | ug/Kg | 4928.920 | 4943.771 | 9017.000 | 1745.166 | 177
3 | % 52-113
R 30 | * | | Benzo(b)fluoranthene, 3541 Low Solid | ug/Kg | 4852.492 | 5016.291 | 9017.000 | 1575.180 | 182
7 | % 37-150
R 30 | * | | Benzo(k)fluoranthene, 3541 Low Solid | ug/Kg | 3919.584 | 4014.771 | 9017.000 | 1983.505 | 107
8 | % 37-120
R 30 | | | Benzo(a)pyrene, 3541 Low Solid | ug/Kg | 4419.626 | 4395.085 | 9017.000 | 1742.777 | 148
2 | % 55-117
R 30 | * | | Indeno(1,2,3-cd)pyrene, 3541 Low Solid | ug/Kg | 3458.819 | 3340.461 | 9017.000 | 1143.783 | 128
2 | % 57-118
R 30 | * | | Dibenzo(a,h)anthracene, 3541 Low Solid | ug/Kg | 2227.306 | 2227.465 | 9017.000 | 461.067 | 98
3 | % 54-121
R 30 | | | Benzo(ghi)perylene, 3541 Low Solid | ug/Kg | 3861.785 | 3825.158 | 9017.000 | 1304.039 | 3
142
1 | % 56-128
R 30 | * | | | Job Number.: 249132 | QUAL | ITY | CON | TROL RE | SUL | T S | Repo | rt Date | e.: 1 | 0/27/2 | 006 | | | |---|-------------------------------------|--------------------------------------|----------------|---|----------------|--|-------|-------|---------|-------|--------|-------|---------|-----------| | CUSTOMER: SC | S Engineers, Inc. | | PROJE | CT: GSA | - SLOP | | | ATTN | : Davic | i Bre | wer | | | | | QC Type | Descripti | on | | Rea | ag. Code | Lat | o ID | Dil | ution F | acto | r | Date | Tîm | e | | | : 6010B
iption.: Metals Analysis | (ICAP Trace |) | | Equipment Code | | | | | Ana | lyst | .: to | is | | | ссв | Continuing Calibration | Blank | | | | 191568- | -016 | | | | 10 | /18/2 | 2006 16 | 13 | | Parame | eter/Test Description | Units | QC Re | sult | QC Result | True \ | /alue | Orig. | Value | QC | Calc. | * | Limits | ····· | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.
0.
0. | 00210 U
00210 U
00260 U
00216 B
00640 U | | | | | | | | | | | | ссв | Continuing Calibration | Blank | | | | 191568- | -028 | | | | 10 | /18/2 | 2006 17 | 26 | | Parame | eter/Test Description | Units | QC Re | sult | QC Result | True \ | /alue | Orig. | Value | QC | Calc. | * | Limits | | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.
0.
0. | 00210 U
00210 U
00260 U
00090 U
00640 U | | | | | | | | | | | | CCB | Continuing Calibration | Blank | | | | 191568- | -040 | | | | 10 | /18/2 | 2006 18 | 40 | | Parame | eter/Test Description | Units | QC Re | sult | QC Result | True V | /alue | Orig. | Value | QC | Calc. | * | Limits | | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.
0.
0. | 00210 U
00210 U
00260 U
00090 U
00640 U | | | | | | | | | | makeus to | | ССВ | Continuing Calibration | Blank | | | | 191568- | -048 | | | | 10 | /18/2 | 2006 19 | 32 | | Parame | eter/Test Description | Units | QC Re | sult | QC Result | True \ | /alue | Orig. | Value | QC | Calc, | * | Limits | ونمت | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.
0.
0. | 00210 U
00210 U
00260 U
00197 B
00640 U | | . www.aranaanaanaanaanaanaanaanaanaanaanaanaan | | | | | | | | _ | | ССВ | Continuing Calibration | Blank | | | | 191568- | -060 | | | | 10 | /18/2 | 2006 20 | 38 | | Parame | eter/Test Description | Units | QC Re | sult | QC Result | True V | /alue | Orig. | Value | QC | Calc. | × | Limits | <u> </u> | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.
0.
0. | 00210 U
00210 U
00260 U
00166 B
00640 U | | | | | | | | | | - | | | Job Number.: 249132 | QUA | LITY | € O N | TROLR | ESULTS | Report Date.: 10/ | 27/2006 | |---|-------------------------|--------------------------------------|----------------------
--|-----------|------------|-------------------|-----------------| | CUSTOMER: 5 | CCS Engineers, Inc. | | PROJECT | T: GSA | - SLOP | | ATTN: David Brewe | ir. | | QC Type | Descripti | on | | Rea | ag. Code | Lab ID | Dilution Factor | Date Time | | CCB | Continuing Calibration | Blank | | | | 191568-072 | | 10/18/2006 2144 | | Para | nmeter/Test Description | Units | QC Resu | ult | QC Result | True Value | Orig. Value QC Ca | ılc. * Limits | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.00
0.00
0.00 | 0210 U
0210 U
0260 U
0243 B
0640 U | | | | | | CCB | Continuing Calibration | Blank | | | | 191568-082 | | 10/18/2006 2245 | | Para | mmeter/Test Description | Units | QC Resu | ult | QC Result | True Value | Orig. Value QC Ca | alc. * Limits | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.00
0.00
0.00 | 0210 U
0210 U
0260 U
0090 U
0640 U | | | | | #### QUALITY CONTROL RESULTS Job Number .: 249132 Report Date.: 10/27/2006 PROJECT: GSA - SLOP CUSTOMER: SCS Engineers, Inc. ATTN: David Brewer Lab ID Dilution Factor QC Type Description Reag. Code Date Time Test Method....: 6010B Equipment Code...: ICP5 Analyst...: tds Method Description.: Metals Analysis (ICAP Trace) Batch..... 191568 CCV Continuing Calibration Verification M06JCCV001 191568-015 10/18/2006 1604 Parameter/Test Description Units QC Result QC Result True Value Orig. Value QC Calc. Limits % 0.49965 0.50000 100 Arsenic mg/L 90-110 mg/L 0.49982 0.50000 100 % 90-110 Copper Lead mg/L 0.50410 0.50000 101 % 90-110 0.49218 0.50000 98 % 90-110 Silver mg/L 0.50000 99 90-110 Zinc mg/L 0.49291 CCV Continuing Calibration Verification MO6JCCV001 191568-027 10/18/2006 1717 Parameter/Test Description Units QC Result QC Result True Value Orig. Value QC Calc. Limits 0.50000 % 0.49845 100 90-110 mg/L Arsenic Copper mg/L 0.50114 0.50000 100 % 90-110 % mg/L 0.50451 0.50000 101 90-110 Lead Silver 0.49917 0.50000 100 90-110 mg/L mg/L 0.48986 0.50000 90-110 Zinc 98 CCV Continuing Calibration Verification MO6JCCV001 191568-039 10/18/2006 1831 Parameter/Test Description Units QC Result QC Result True Value Orig. Value QC Calc. Limits % Arsenic mg/L 0.49647 0.50000 90-110 Copper mg/L 0.50053 0.50000 100 % 90-110 0.50000 Lead mg/L 0.50290 101 % 90-110 0.50000 90-110 97 Silver mg/L 0.48299 % mg/L Zinc 0.48727 0.50000 97 90-110 Continuing Calibration Verification M06JCCV001 191568-047 10/18/2006 1923 CCV QC Result QC Result QC Calc. Parameter/Test Description Units True Value Orig. Value Limits 0.49797 0.50000 100 % 90-110 Arsenic mg/L 0.50182 0.50000 100 % 90-110 Copper mg/L 0.49386 0.50000 99 % 90-110 Lead mg/L 0.50000 96 90-110 Silver mg/L 0.47918% Zinc mg/L 0.48205 0.50000 96 90-110 Continuing Calibration Verification MO6JCCVO01 10/18/2006 2029 CCV 191568-059 QC Calc. Parameter/Test Description Units QC Result QC Result True Value Orig. Value Limits mg/L % Arsenic 0.49997 0.50000 100 90-110 0.50348 0.50000 101 % 90-110 Copper mg/L Lead mg/L 0.50511 0.50000 101 % 90-110 0.50000 90-110 Silver mg/L 0.49635 99 % 98 0.48901 0,50000 90-110 mg/L Zinc | | Job Number.: 249132 | QUAL | ITY | CON | TROLR | ESULTS | Repo | rt Date | .: 10/27 | 7/2006 | | |---|----------------------------|--------------------------------------|----------------------|--------------------------------------|-----------------|---|-------|---------|-------------------------------|------------------|--| | CUSTOMER | : SCS Engineers, Inc. | | PROJEC' | Γ: GSA | - SLOP | | ATTN | : David | Brewer | | | | QC Type | Descripti | ion | | Re | ag. Code | Lab ID | Dil | ution F | actor | Date | Time | | CCV | Continuing Calibration | Verification | | M06J | ccv001 | 191568-071 | | | | 10/18/ | 2006 2135 | | P | Parameter/Test Description | Units | QC Resi | ult | QC Result | True Value | Orig. | Value | QC Calo | · * | Limits | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L | 0.50
0.49
0.50 | | | 0.50000
0.50000
0.50000
0.50000
0.50000 | | | 99
101
100
100
97 | %
%
%
% | 90-110
90-110
90-110
90-110
90-110 | | CCV | Continuing Calibration | Verification | | M06J | cc v 001 | 191568-081 | | | I | 10/18/ | /2006 2236 | | P | Parameter/Test Description | Units | QC Resi | ult | QC Result | True Value | Orig. | Value | QC Cal | ;. * | Limits | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.49
0.50
0.5 | 9219
9596
0468
0939
8856 | | 0.50000
0.50000
0.50000
0.50000
0.50000 | | | 98
99
101
102
98 | %
%
%
% | 90-110
90-110
90-110
90-110
90-110 | #### QUALITY CONTROL RESULTS Report Date.: 10/27/2006 Job Number.: 249132 ATTN: David Brewer PROJECT: GSA - SLOP CUSTOMER: SCS Engineers, Inc. Dilution Factor Time Lab ID Date Description Reag. Code QC Type Equipment Code...: ICP5 Analyst...: tds Test Method.....: 6010B Batch..... 191568 Method Description.: Metals Analysis (ICAP Trace) CRI MO6JCR1001 191568-012 10/18/2006 1549 Contract Required Detection Limits QC Calc. Units QC Result QC Result True Value Orig. Value Limits Parameter/Test Description % 102 Arsenic mg/L 0.02049 0.02000 50-150 0.02000 102 % 50-150 0.02039 Copper mg/L % Lead mg/L 0.01018 0.01000 102 50-150 0.01327 0.01000 133 % 50-150 Silver mg/L 0,04000 50-150 Zinc mg/L 0.03940 98 10/18/2006 1908 MO6JCRI001 191568-044 CRI Contract Required Detection Limits QC Result QC Result True Value Orig. Value QC Calc. Limits Parameter/Test Description Units 102 % 50-150 0.02000 Arsenic mg/L 0.02047 mg/L 0.01924 0.02000 96 50-150 Copper 0.01000 92 50-150 % 0.00916 Lead mg/L % 0.01096 0.01000 110 50-150 Silver mg/L 0.04000 93 50-150 0.03736 Zinc mg/L MO6JCRI001 191568-078 10/18/2006 2220 CRI Contract Required Detection Limits QC Result True Value Orig. Value QC Calc. Parameter/Test Description Units QC Result Limits 94 % 0.01874 0.02000 50~150 mg/L Arsenic 98 % mg/L 0.01963 0.02000 50-150 Copper %% 95 50-150 mg/L 0.00949 0.01000 Lead mg/L mg/L 0.01250 0.03928 Silver Zinc 0.01000 0.04000 125 98 50-150 50-150 Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer QC Type Description Reag. Code Lab ID Dilution Factor Date Time Analyst...: tds Test Method.....: 6010B Method Description.: Metals Analysis (ICAP Trace) Equipment Code...: ICP5 Batch....: 191568 | ICB Initial Calibration Bl | ank | | | 191568-011 | | | 10 | /18/2006 15 | 544 | |----------------------------|--------------|-----------|-----------|------------|-------|-------|----------|-------------|-----| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. | Value | QC Calc. | * Limits | | | Arsenic | mg/L | 0.00210 U | | | | | | | | | Copper | mg/L | 0.00210 U | | | | | | | | | Lead | mg/L | 0.00260 U | | | | | | | | | Silver | mg/L | 0.00125 B | | | | | | | | | Zinc | mg/L
mg/L | 0.00640 U | | | | | | | | Job Number.: 249132 Report Date.: 10/27/2006 Date Tîme CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer QC Type Description Reag. Code Lab ID Dilution Factor Test Method.....: 6010B Equipment Code...: ICP5 Analyst...: tds | ICV Initial Calibration Ve | rification | M061 | 100001 | 191568-010 | | 10 | /18/ | 2006 153 | 7 | |----------------------------|------------|-----------|-----------|------------|-------------|----------|------|----------|---| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | * | Limits | F | | Arsenic | mg/L | 0.40467 | | 0.40000 | · | 101 | , - | 90-110 | | | Copper | mg/L | 0.40335 | | 0.40000 | | 101 | % | 90-110 | | | Lead | mg/L | 0.41364 | | 0.40000 | | 103 | % | 90-110 | | | Silver | mg/L | 0.40394 | | 0.40000 | | 101 | % | 90-110 | | | Zinc | mg/L | 0.40038 | | 0.40000 | | 100 | % | 90-110 | | | | Job Number.: 249132 | QUAL | ITY (| ONTROL R | ESULTS | Repo | rt Dat∈ | e.: 10/27 | /2006 | | |---
--|--------------------------------------|---|-----------------------|---|-------|---------|-------------------------------|------------------|--| | CUSTOMER: SC | CS Engineers, Inc. | | PROJECT: | GSA - SLOP | | ATTN | : Davic | l Brewer | | | | QC Type | Descrîpt | ion | | Reag. Code | Lab ID | Dil | ution f | actor | Date | Time | | | : 6010B
ription.: Metals Analysis | s (ICAP Trace | e) | Equipment Co
Batch | de: ICP5
: 191568 | | | Analyst | : t | ds | | ISB | Interference Check Samp | ole B | | MO6JISBO01 | 191568-014 | | | | 10/18/ | /2006 1558 | | Paran | neter/Test Description | Units | QC Resul | t QC Result | True Value | Orig. | Value | QC Calc | . * | Limits | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.097
0.546
0.051
0.223
0.933 | 48
46
24 | 0.10000
0.50000
0.05000
0.20000
1.00000 | | | 98
109
103
112
93 | %
%
% | 80-120
80-120
80-120
80-120
80-120 | | ISB | Interference Check Samp | ole B | | MO6JISBO01 | 191568-046 | | | | 10/18/ | /2006 1917 | | Paran | meter/Test Description | Units | QC Resul | t QC Result | True Value | Orig. | Value | QC Calc | . * | Limits | | Arsenic
Copper
Lead
Silver
Zinc | oversion and a second described and the second described as describ | mg/L
mg/L
mg/L
mg/L | 0.101
0.549
0.046
0.215
0.928 | 950
900
99 | 0.10000
0.50000
0.05000
0.20000
1.00000 | | | 101
110
92
108
93 | %
%
%
% | 80-120
80-120
80-120
80-120
80-120 | | ISB | Interference Check Samp | ole B | | MO6JISBO01 | 191568-080 | | | | 10/18/ | /2006 2229 | | Param | neter/Test Description | Units | QC Resul | t QC Result | True Value | Orig. | Value | QC Calc | . * | Limits | | Arsenic
Copper
Lead
Silver
Zinc | | mg/L
mg/L
mg/L
mg/L
mg/L | 0.100
0.545
0.045
0.223
0.919 | 81
48
42 | 0.10000
0.50000
0.05000
0.20000
1.00000 | | | 100
109
91
112
92 | %
%
%
% | 80-120
80-120
80-120
80-120
80-120 | Job Number.: 249132 QC Type Silver, Solid Zinc, Solid Description mg/Kg mg/Kg Report Date.: 10/27/2006 Date Time 80-120 80-120 Dilution Factor 0.10 1.37 บ 95 U 94 PROJECT: GSA - SLOP ATTN: David Brewer CUSTOMER: SCS Engineers, Inc. 4.77 46.85 Reag. Code Analyst...: tds Test Method.....: 6010B Equipment Code....: ICP5 Lab ID 5.00 50.00 Batch..... 191568 Method Description.: Metals Analysis (ICAP Trace) 10/18/2006 1942 LCS Laboratory Control Sample M06JSPK001 191439-002 QC Result QC Result True Value Orig. Value QC Calc. Limits Parameter/Test Description Units Arsenic, Solid Copper, Solid Lead, Solid -% % % % % % 9.16 10.00 0.37 U 92 80-120 mg/Kg 25.43 9.77 0.22 U 102 80-120 25.00 mg/Kg mg/Kg 10.00 0.25 U 98 80-120 QUALITY CONTROL RESULTS Report Date.: 10/27/2006 Lab ID Dilution Factor Date Time CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: Job Number.: 249132 QC Type Description Reag. Code Test Method.....: 6010B Equipment Code...: ICP5 Analyst...: tds Method Description: Metals Analysis (ICAP Trace) Batch......: 191568 | MB Method Blank | | | 143 | 9 | 191439-001 | | | 1 |)/18, | /2006 193 | 37 | |--|---|--------------|-----------------------|-----------|------------|-------|-------|----------|-------|-----------|----| | Parameter/Test Description | Units | QC Result | | QC Result | True Value | Orig. | Value | QC Calc. | * | Limits | F | | Arsenic, Solid
Copper, Solid
Lead, Solid
Silver, Solid
Zinc, Solid | mg/Kg
mg/Kg
mg/Kg
mg/Kg
mg/Kg | 0.22
0.25 | U
U
U
U
U | | | | | | - | | | Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: QC Type Reag. Code Dilution Factor Time Date Test Method.....: 6010B Method Description.: Metals Analysis (ICAP Trace) Description Lab ID Analyst...: tds | S1 Standard 1 | | MO6A | INTOO1 | 191568-008 | | 10 | /18/ | 2006 152 | 24 | |----------------------------|-------|-----------|-----------|------------|-------------|----------|------|----------|----| | Parameter/Test Description | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | * | Limits | F | | Arsenic | mg/L | 0.99703 | | 1.00000 | | 100 | - % | 95-105 | | | Copper | mg/L | 1.00192 | | 1,00000 | | 100 | % | 95-105 | | | Lead | mg/L | 1.00513 | | 1.00000 | | 101 | % | 95-105 | | | Silver | mg/L | 1.00587 | | 1.00000 | | 101 | % | 95-105 | | | Zinc | mg/L | 0.99159 | | 1.00000 | | 99 | % | 95-105 | | | | Job Number.: 249132 | QUAL | ITY COI | NTROL | RESULTS | Report Date. | : 10/27/2 | 2006 | | |-----------|--|--------------|--------------|-----------|------------------------|--------------|-----------|-----------|------| | CUSTOMER: | SCS Engineers, Inc. | | PROJECT: GS. | A - SLOP | | ATTN: | | | | | QC Type | Descripti | on | R | eag. Code | Lab ID | Dilution Fa | ctor | Date | Time | | | od: 6010B
scription.: Metals Analysis | (ICAP Trace) | | | Code: ICP5
: 191568 | | Analyst. | : tds | | | S2 | Standard 2 | | M06. | AINTOO2 | 191568-009 | | 10 | 0/18/2006 | 1530 | | Par | rameter/Test Description | Units | QC Result | QC Resul | t True Value | Orig. Value | QC Calc. | * Lim | its | | _ead | | mg/L | 20.36271 | | 20.0000 | · | 102 | % 95 | -105 | Job Number.: 249132 Report Date.: 10/27/2006 | CUSTO | OMER: SCS | Engineers | , Inc. | | | PROJECT: GS | A - SLOP | | | | ATTN: | Dav | îd | Brewer | | | |----------|----------------------|----------------------------|-----------------|--------------|----|--|------------------------|---|---------|---|---------|-----|--------|----------------------|--------------------------|------| | Metho | od Descri | : Me
ption.: %:
: % | Solids Deter | mination | | | Batch
Equipment Coc | | | 5 | | | | Analyst
Test Code | | | | QC La | ab ID | Reagent | Units | QC Result | | QC Result | True Value | Orig | . Value | | QC Calc | . F | * | Limits | Date | Time | | MB 191 | 1285-001 | | % | 0.1000 | U | | | | | | | | hapana | | 10/13/2006 | 2000 | | Metho | od Descri | : 74
ption: Me
: Me | rcury (CVAA) | Solids | | | Batch
Equipment Coc | | | 5 | | | 3 | Analyst
Test Code | | | | QC La | ab ID | Reagent | Units | QC Result | | QC Result | True Value | Orig | . Value | | QC Calc | . F | × | Limits | Date | Time | | ICV 191 | 1485-007 | M06HSTK010 | ug/L | 2.03 | | ······································ | 2.00 | | | | 101 | _ | % | 90-110 | 10/17/2006 | 0728 | | CRA 191 | | M05LSTK001 | ug/L
ug/L | 0.08
0.23 | U | | 0.20 | | | | 117 | | % | 50-150 | 10/17/2006
10/17/2006 | 0733 | | | 1485-010 | MO6HSTK010 | mg/Kg | 0.01
0.01 | IJ | | 0.01 | | 0.01 | U | 99 | | % | 80-120 | 10/17/2006
10/17/2006 | | | | | M06HSTK010 | | 0.07 | Ü | | 1.00 | | 0.01 | U | 92 | | % | 90-120 | | | | CCB 191 | 1485-018 | | ug/L | 0.08 | IJ | | | | | | | | | | 10/17/2006 | 0751 | | | | MO6HSTKO10 | | 0.94 | U | | 1.00 | | | | 94 | | % | 90-110 | 10/17/2006
10/17/2006 | | | | 1485-030
1485-036 | M06HSTK010 | ug/L
ug/L | 0.08
0.93 | U | | 1.00 | | | | 93 | | % | 90-110 | 10/17/2006 | | | | 1485-037 | | ug/L | 0.08 | U | | | | | | , , | | ,, | 7 | 10/17/2006 | | | | | M06HSTK010 | ·, | 0.85 | | | 1.00 | | | | 85 | | % | 90-110 | | 0939 | | | 1485-039 | M06HSTK010 | ug/L | 0.08
0.90 | U | | 1.00 | | | | 90 | | % | 90-110 | 10/17/2006
10/17/2006 | | | | 1485-043 | HOORS INCITO | ug/L | 0.98 | U | | 1.00 | | | | 90 | | 70 | 20 110 | 10/17/2006 | | | | 1484-007 | | mg/Kg | 0.01 | Ü | | | | | | | | | |
10/17/2006 | 0955 | | | | MO6HSTKO10 | | 0.15 | | | 0.17 | | 0.01 | U | 88 | | % | 80-120 | | | | | 1485-057
1485-052 | MO6HSTK010 | ug/L
ug/L | 0.92
0.08 | U | | 1.00 | | | | 92 | | % | 90–110 | 10/17/2006
10/17/2006 | | | | 9132-32 | | mg/Kg | 0.00 | U | | | | 0.12 | | 1.6 | | R | 20.0 | 10/17/2006 | | | | | M05LSTK001 | | 0.20 | | | 0.09 | | 0.12 | | 85 | | % | 75-125 | 10/17/2006 | 1033 | | | | MO6HSTK010 | | 0.92 | | | 1.00 | | | | 92 | | % | 90-110 | | | | | 1485-064 | M05LSTK001 | ug/L
ma/Ka | 0.08
0.22 | U | 0.20 | 0.09 | | 0.12 | | 105 | | % | 75-125 | 10/17/2006
10/17/2006 | | | 1130 247 | 7132 32 | 1103E31R001 | 9/ r/g | V.LL | | 0.20 | 0.07 | | 0.12 | | 21.1 | * | | 20 | 10/11/2000 | 007 | | | 1485-071
1485-072 | MO6HSTK010 | ug/L
ug/L | 1.02
0.08 | U | | 1.00 | | | | 102 | | % | 90–110 | 10/17/2006
10/17/2006 | | | Metho | od Descri | : 74
ption.: Me
: Me | rcury (CVAA) | Solids | | | Batch
Equipment Coc | | | 2 | | | | Analyst
Test Code | | | | QC La | ab ID | Reagent | Units | QC Result | | QC Result | True Value | Orig | . Value | | QC Calc | . F | * | Limits | Date | Time | | | | M06HSTK010 | ~ · · · | 2.00 | | | 2.00 | *************************************** | | | 100 | | % | 90–110 | 10/19/2006 | | | | 1932-008 | MO5LSTKOO1 | ug/L | 0.08
0.21 | Ü | | 0.20 | | | | 107 | | 9/ | 50-150 | 10/19/2006
10/19/2006 | | | | 2015-007 | FIODES I KOUT | ug/∟
ug/Wipe | 0.01017 | U | | 0.20 | | | | IVI | | % | 70-150 | 10/19/2006 | | | LCS 192 | 2015-008 | M06HSTK010 | ug/Wipe | 0.32992 | | | 0.33340 | { | 0.01017 | U | 99 | | % | 80-120 | 10/19/2006 | 1434 | | | | M06HSTK010 | - 1 | 0.99 | | | 1.00 | | | | 99 | | % | 90-110 | 10/19/2006 | 1447 | | | 1932-018
1932-029 | M06HSTK010 | ug/L
ug/l | 0.08
0.93 | Ų | | 1.00 | | | | 93 | | % | 90~110 | 10/19/2006
10/19/2006 | | | | 1932-029 | HOURS INC. IO | ug/L
ug/L | 0.93 | U | | 1.00 | | | | / 3 | | /0 | 20 TTO | 10/19/2006 | | | | | | 3, | | | | | | | | | | | | , , | · | Job Number.: 249132 Report Date.: 10/27/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Test Method.....: 7471A Batch......: 191932 Analyst...: gok Method Description: Mercury (CVAA) Solids Equipment Code...: HG3 Test Code.: HG Parameter.....: Mercury | QC Lab ID | Reagent | Units | QC Result | QC Result | True Value | Orig. Value | QC Calc. | F * | Limits | Date | Time | |--------------|---------|--------------|----------------|-----------|------------|---|----------|-----|--------|--------------------------|------| | CCV 191932-0 | | ug/L
ug/L | 0.90
0.08 L | J | 1.00 | *************************************** | 90 | | 90-110 | 10/19/2006
10/19/2006 | | # REFERENCES AND NOTES Report Date: 10/27/2006 ## REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - U Analyte was not detected at or above the stated limit. - Not detected at or above the reporting limit. - J Result is less than the RL, but greater than or equal to the method detection limit. - B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - S Result was determined by the Method of Standard Additions. - AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. - Inorganic Flags (Flag Column) - ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits. - * LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - + MSA correlation coefficient is less than 0.995. - 4 MS, MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - H MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - N MS, MSD: Spike recovery exceeds the upper or lower control limits. - W AS(GFAA) Post-digestion spike was outside 85-115% control limits. - Organic Qualifiers (Q Column) - U Analyte was not detected at or above the stated limit. - ND Compound not detected. - J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Q Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - Y The chromatographic response resembles a typical fuel pattern. - Z The chromatographic response does not resemble a typical fuel pattern. - E Result exceeded calibration range, secondary dilution required. - F AFCEE:Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - B MB: Batch QC is greater than reporting limit. - * LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - a Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - D Surrogate or matrix spike recoveries were not - obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - H Alternate peak selection upon analytical review - I Indicates the presence of an interfence, recovery is not calculated. - M Manually integrated compound. - P The lower of the two values is reported when the % difference between the results of two GC columns is # REFERENCES AND NOTES Report Date: 10/27/2006 ``` greater than 25%. Abbreviations Post Digestion Spike (GFAA Samples - See Note 1 below) AS Designation given to identify a specific extraction, digestion, preparation set, or analysis set Batch CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification CF Confirmation analysis of original Confirmation analysis of A1 or D1 c1 C2 Confirmation analysis of A2 or D2 C3 Confirmation analysis of A3 or D3 Low Level Standard Check - GFAA; Mercury CRA CRI Low Level Standard Check - ICP CV Calilbration Verification Standard Dil Fac Dilution Factor - Secondary dilution analysis D1 Dilution 1 D2 Dilution 2 D3 Dilution 3 DLFac Detection Limit Factor DSH Distilled Standard - High Level DSL Distilled Standard - Low Level Distilled Standard - Medium Level DSM EB1 Extraction Blank 1 FB2 Extraction Blank 2 EB3 DI Blank Method Extracted LCS FLC ELD Method Extracted LCD ICAL Initial calibration ICB Initial Calibration Blank Initial Calibration Verification ICV Instrument Detection Limit IDL. Interference Check Sample A - ICAP ISA Interference Check Sample B - ICAP ISB The first six digits of the sample ID which refers to a specific client, project and sample group Job No. Lab ID An 8 number unique laboratory identification Laboratory Control Standard Duplicate LCD LCS Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest MR Method Blank or (PB) Preparation Blank MD Method Duplicate MDI Method Detection Limit MLE Medium Level Extraction Blank Method Reporting Limit Standard MRL MSA Method of Standard Additions MS Matrix Spike Matrix Spike Duplicate MSD ND Not Detected Preparation factor used by the Laboratory's Information Management System (LIMS) PREPE PDS Post Digestion Spike (ICAP) RA Re-analysis of original Α1 Re-analysis of D1 A2 Re-analysis of D2 Α3 Re~analysis of D3 RD Re-extraction of dilution RF Re-extraction of original Re-extraction Confirmation RC RI. Reporting Limit RPD Relative Percent Difference of duplicate (unrounded) analyses RRF Relative Response Factor RT Retention Time ``` # REFERENCES AND NOTES Report Date: 10/27/2006 RTW Retention Time Window Sample ID A 9 digit number unique for each sample, the first six digits are referred as the job number SCB Seeded Control Blank Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) SD UCB Unseeded Control Blank Second Source Verification Standard SSV SLCS Solid Laboratory Control Standard(LCS) pH Calibration Check LCSP pH Laboratory Control Sample PHC LCDP pH Laboratory Control Sample Duplicate pH Sample Duplicate MDPH MDFP Flashpoint Sample Duplicate LCFP Flashpoint LCS Gelex Check Standard Range 0-1 G1 G2 Gelex Check Standard Range 1-10 Gelex Check Standard Range 10-100 G3 Gelex Check Standard Range 100-1000 G4 Note 1: The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current abbreviation used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/- the RL. | ternal Us | Lab Lot# @ A44 52 % @ Bodom Sould | | T | (Yes) No (Yes) No | X | ٩) | lold Time | (Yeş No (Yes) No NA | pH Check OK Res Cl ₂ Check OK | Yes No (NA) Yes No (NA) | Sample Labels and COC Agree | | Additional
Analyses / Remarks | 2 (15)
4 (2)
4 (3)
4 (4)
4 (4) | | | | | | The state of s | and the state of t | | | | The second secon | DATE 13/0 TIME DOO | S DÁTE, S TIME | 90/ 51 /9/ Paragraph | Hand Delivere | seeus | | |-----------|-------------------------------------|----------|--------------------------|---|---------------------|-------------------------|-----------|---------------------|--|-------------------------|-----------------------------|-------------|-------------------------------|--|--|-----------|---|--------|--|--|--|---------------
--|--|--|--------------------|-----------------|-----------------------|--|--|---| | | | | | | | S Quote: | | | | | | | | | (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | | 33 | | | | | 6 V | 4.4-1.4
13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | | | COMPANY
(9) | S COMPANY | | to date pulley | | | | Bill To: | Contact: 2 Co. | Address: | | Phone: | Fax | #04 Y 92 5 | | | | | \$100 mg/ | | 23/43
2000:08 | | The state of s | | 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 2
(2)86
(4)3
(4)3
(4)3
(4)3
(4)3
(4)3
(4)3
(4)3 | | | | Tipological Control of the o | 05::
20
20 M
000
000
000
000
000
000 | 1011
1012
1013
1013
1013 | RECEIVED BY | RECEIVED BY | S.N. S. WOOD IS S. J. | - 100 mm |
0.004.65
20.004.65
0.005.00
0.005.00
0.004.00
0.004.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005.00
0.005 | | | 17 | Cherrania | 11 | ر
الا | 45/-13/0 | 121 721 | 3 | | # / Cont. | Volume | Preserv | | | Sampling Market Time | X Z N Jane | 25.6 | 4,1/0 | 7.70 | | | | 1.76 | 156 | 5.00 V V V | 4 | 20
20
20
20 | DATE TIME | DATE | Preser | isyl 6 | 7.64 W. K | 7. None | | | Company SC | ros de | - 1
- 1
- 1
- 1 | 10/6 | 2 2 2 2 | E-Mail: C. | |) | Project Number: | _ | Date Required | Fax: | Client
Sample ID | | 2050-2 | (2WS/63 | | 144 F | 2012WS/06 | is consists | 10-12 6158 | 912 1215109 1 | in The V | 25/11/1/2/1/2/2 | 1812 11/29 218 | OOMPANY SECOND | COMPANY | 3 CT | .710 | 4. Amber Glass 5. Widemouth G | w = wine 0. Janet 2 0 0 0 on on one on one on one one one one one | | | SEVERN | | | 2417 Bond Street & W C & Inidersity Park II 60466 | Phone: 708-534-5200 | Fax: 708-534-5211 5 2 2 | O | J. Danks | Project Name: | のなって | Project Location: | 1 / Lass mo | Laboratory D Na-msD | 160 E | 200 | 3 102 1/2 | 4 102 | 5 1029 | 6 102A | 1 /20 A. | 1027 | 16701 6 | 1 10 102 F | 11 102 Flas | 100A | RELINQUISHED | RÉLINQUISHÈ POT | | WW = Wastewater SC=Sould W = Water SO=Sould Sould School Sould Sou | = Sludge
= Miscellaneous
= Oil | A = Air 0 = 1 | STL Chicago is a part of Severn Trent Laboratories, Inc. | Shaded Areas For Internal Use Only | Lab Lot# 249133 s Package Sealed Samples Sealed Yes No Yes No Received on Ice Samples Intact Yes No Yes No Temperature 'C of Cooler | Within Hold Time Preserv. Indicated Yes No Yes No NA | PH Check OK Yes No NA Yes No NA Sample Labels and COC Agree Yes No COC not present | i | | | | | | S ONTE LANGE | | Date Received 10/13 06 Courier: 14 Hand Delivered Bill of Lading STL-8208 (0600) | |------------------------------------|--|---
---|--|--------------------------|--|--|---|--|--------------|---
--| | Shar | 2 | 0: 10: 10: 10: 10: 10: 10: 10: 10: 10: 1 | A Section Services | | | A STATE OF THE STA | | | | COMPAKY |) | Secretary of the secret | | Bill To: | Contact: Company: S & | A County of the | 27 10 42
28 28 7
38 38 7
38 38 7
38 38 7
38 38 7
38 38 7 | SEED LEEKEN Å
TOO TURES K
TOO TOO TOO
TOO TOO TOO | | | endered of the second s | :) A () A | (1) (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | B) (d) | | MMENTS TO THE PARTY OF THE PARTY INC. | | 18 | Bates L. D. M. B. | | | Comp/ | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | 1.4524 21.
7 13 11468 | | | | 7 - 140
7 - 1308
1 - 1308
1 - 10 - 10 - 10 | Preservative Key 2. HCG, Cooking & December 19, 100 12. H2SO4, Cooking & December 19, 100 13. HNO3; Cooking 49, 100 14. NAGH Cooking 49, 100 15. NaGH Cooking 49, 100 15. NaGH Cooking 10, 100 17. None 17. None 17. Chirang is part of Salam. | | Report To: | 255 H | (b) (6 | | Sampling
Date Time | 20 21/8 80 D | 8:30 W | | | 9.30 | 7 Soles | | 1. Postoc
2. VOA Vial
3. Steine Pastoc
5. Widerhouth Glass
5. Widerhouth Glass
6. Office | | ~ | Messes a condition of the second seco | routh 1g, 1910
1000 h heodi
1005 set form
1135 sed to
1135 sed to | Project in | | 19002WS112
A0072PC112 | 02 Floor 1 WS 113 | Floor 1 PL 114 | | $\mathbb{Z} \mathcal{Z} _{\mathcal{I}}$ | Floor IPC | COMPANY | SE Seliment SO=Solid DE=Drum Liquid L = Drum Liquid Will = Wipe | | | SEVERN TRENT ST Chicago 2417 Bond Street University Park, IL 604666 | Phone: 708-534-5200
Fax 708-534-5211
Sampler Name: 7 | コンマン | <u> </u> | 13 /0/ | 10/09/09/09/09/09/09/09/09/09/09/09/09/09 | 7e/ 81 | | (120) RE | | RELINQUIS | Wyw = Wastewater Wyw = Water Soll = Sold S. = Sold MS = Miscellaneous O.L = Oil A = Air | | \sim | Samples Sealed Yes No Samples Intact Yes No | | Agree COC not present | | | - research | | | TIME 1000 | 13 / 06 Hand Delivered | |------------------------------------|--
--|---|-----------------------|---|---|--|---|---|--| | ternal Use Only | 24C | | le Labels and COC Agree Yes No COC not pre: Additional Analyses / Remarks | | 10 | 43 (LA
3
1 CO B RSRUS
5 CO - CT PORM | iser occasi
no Whiesa
i) Contrar | 18 11 - 80 010
18 11 - 80 010
18 11 1800 V 31 | DATE: | 2 | | Shaded Areas For Internal Use Only | Lab'Lot# 24 | n Hold
ss N
Check | Sample Labels and COC Agree Yes No COC no | | and describes the second | | Colonard
Colonard
Colonard
Colonard
Machiner | | | Date Received Courter: | | Sh | | | Tage was comed to the common terms of the common terms and the common terms are common terms and the common terms are | | | | | A (2) の解析 (4) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7 | COMPANY COMPANY | | | | 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | - 010 January 10 10 10 10 10 10 10 10 10 10 10 10 10 | 5
7
7 | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | - w 2 - 466
- 4876
- 4876
- 4876
- 4876
- 4876
- 4876
- 4876 | | 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | (b) (6) | 1 | | | | | 2 10 "Landffff
37 102 - 362
38 11 02 2
38 12 0 12 0 2
38 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 | 8 3 | 1 | | | | 10 RB | Property of the control contr | | Bill To: | Contact Contact Company: Phone: Fax: Fax: Fax: Fax: Fax: Fax: Fax: Fax | | great Selection |)
7) | | X | ig fele | biors probago
apo arco ac
con arco a
con arco a | RECEIVED BY | at of Seven Trent Lab | | | 2006 | Sont. | dera)/dmoک
۱۴۶۰
کاورددردم
ماری کاری کاری | 9
2
2
3
3 | \
\
\
\
\ | |) 200 A | | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Preservative Key Grand Comments Comment | | | 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | | | 91.45 C | 1245 C | | 12.15
12.25 | 12:45
72:55
7:05 | DATE 1972. | ेबनावर स्वास्त्य १०
 | | Report To: | 1002 100 1 | (b) *** | | 18 Jail 2-de | 8/0 | A CALOUS
A CALOUS | ted hete
thate or
track a
track a | Carrey (r. 1)-8
St. 13-6 Str.
St. 13-6 Str.
St. 13-6 Str.
St. 13-6 Str. | | Container Key. 1. Plastic 2. Void and a service Plastic 4. Amber Glass 5. Wridemouth Glass 6. Other and a service | | | Mostal of Puchase Congression Cong | (6) 100 (6)
100 (6) 10 | | - I a | 10-11-018 | | ا 💉 اد | 5000 | (b) | 26808/ | | | Coption Contractor Coption Contractor Coption Contractor Coption Contractor Coption Contractor Coption | STAN AL X | | 779 | 102EF | 10205 | 120/ | 22.65 | 1026 | Matrix Key | | | SEVERN TRENT STI Chicago 2417 Bond Street University Park, IL 60466 Phone: 708-534-5200 Fax 708-534-5211 | Sampler Name: | Project Location: | | 37 20 | 29
30 | E 28 | 33 | 3.6
RELINQUISHED
RELINQUISHED | WW = Wastewater W = Water S = Soil SL = Sludge MS = Miscellaneous OL = Oil A = Air | # SEVERN TRENT LABORATORIES ANALYTICAL REPORT JOB NUMBER: 249639 Prepared For: SCS Engineers, Inc. 10975 El Monte Suite 100 Overland Park, KS 66211 Project: GSA - SLOP Attention: David Brewer Date: 12/06/2006 Signature Date Name: Richard C. Wright Title: Project Manager E-Mail: rwright@stl-inc.com STL Chicago 2417 Bond Street University Park, IL 60466 PHONE: (708) 534-5200 FAX..: (708) 534-5211 This Report Contains (_____) Pages SAMPLE INFORMATION Date: 12/06/2006 Job Number:249639Project Number:20006654Customer...:SCS Engineers, Inc.Customer Project ID...:GSA - SLOPAttn....:David BrewerProject Description...:GSA - SLOP | Laboratory
Sample ID | Customer
Sample ID | Sample
Matrix | Date
Sampled | Time
Sampled | Date
Received | Time
Received | |-------------------------|-----------------------|------------------|-----------------|-----------------|------------------|------------------| | 249639-1 | SB126 | Water | 11/18/2006 | 10:45 | 11/24/2006 | 09:45 | STL Chicago is part of Severn Trent Laboratories, Inc. LABORATORY TEST RESULTS Job Number: 249639 Date:12/06/2006 CUSTOMER: SCS Engineers, Inc. PROJECT: GSA - SLOP ATTN: David Brewer Customer Sample ID: SB126 Date Sampled....: 11/18/2006 Time Sampled....: 10:45 Sample Matrix....: Water Laboratory Sample ID: 249639-1 Date Received.....: 11/24/2006 Time Received.....: 09:45 | 8015B MDRO 7 | | | QFLA | AGS MDL | RL | DILUTION | UNITS | BATCH | DT | DATE/TIME | TECH | |--------------|---|------|------|---------|------|----------|-------|-----------|----|---------------|------| | | TPH - Diesel Range Organics (DRO) Diesel Range Organics (DRO) | 0.74 | | 0.033 | 0.12 | 1.00000 | mg/L | 194560 | | 11/29/06 0819 | san |

 | | | | ^{*} In Description = Dry Wgt. LABORATORY CHRONICLE Job Number: 249639 Date: 12/06/2006 | CUSTOMER: SCS Eng | jineers, Inc. | PROJECT: GSA - | SLOP | | ATIN: David Brewer | | | | | | |---------------------------------------|---|----------------|------------------|-------------------------------|----------------------------------|--------------|----------|--|--|--| | Lab ID: 249639-1
 METHOD
 EDD | Client ID: SB126 DESCRIPTION Electronic Data Deliverable | | | 24/2006 Sampl
PREP BT #(S) | e Date: 11/18/20
DATE/TIME AI | | DILUTION | | | | | 3510C
8015B MDRO | Extraction Sep. Funnel (Diesel) TPH - Diesel Range Organics (DRO) | 1
1
1 | 194076
194560 | 194076 | 11/24/2006
11/29/2006 | 1330
0819 | 1.00000 | | | | ## REFERENCES AND NOTES Report Date: 12/06/2006 #### REPORT COMMENTS - 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety. - 2) Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently. - 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable. - 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 100201 - 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt. Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column) - U Analyte was not detected at or above the stated limit. - < Not detected at or above the reporting limit. - J Result is less than the RL, but greater than or equal to the method detection limit. - B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. - S Result was determined by the Method of Standard Additions. - F AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column) - ^ ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits. - * LCS, LCD, MD: Batch QC exceeds the upper or lower control limits. - + MSA correlation coefficient is less than 0.995. - 4 MS, MSD: The analyte present in the original sample is 4 times greater - than the matrix spike concentration; therefore, control limits are not applicable. - E SD: Serial dilution exceeds the control limits. - MB, EB1, EB2, EB3: Batch QC is greater than reporting limit or had a - negative instrument reading lower than the absolute value of the reporting limit. - N MS, MSD: Spike recovery exceeds the upper or lower control limits. - W AS(GFAA) Post-digestion spike was outside 85-115% control limits. - Organic Qualifiers (Q Column) - U Analyte was not detected at or above the stated limit. - ND Compound not detected. - J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC). - Q Result was qualitatively confirmed, but not quantified. - C Pesticide identification was confirmed by GC/MS. - Y The chromatographic response resembles a typical fuel pattern. - The chromatographic response does not resemble a typical fuel pattern. - ${\tt E}$ Result exceeded calibration range, secondary dilution required. - F AFCEE: Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column) - B MB: Batch QC is greater than reporting limit. - * LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. - ^ EB1, EB2, EB3, MLE: Batch QC is greater than reporting Limit - A Concentration exceeds the instrument calibration range - a Concentration is below the method Reporting Limit (RL) - B Compound was found in the blank and sample. - D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for - analysis; also compounds analyzed at a dilution will be flagged with a D. - H Alternate peak selection upon analytical review - I Indicates the presence of an interfence, recovery is not calculated. - M Manually integrated compound. - P The lower of the two values is reported when the % difference between the results of two GC columns is ## REFERENCES AND NOTES Report Date: 12/06/2006 ``` greater than 25%. Abbreviations Post Digestion Spike (GFAA Samples - See Note 1 below) AS Designation given to identify a specific extraction, digestion, preparation set, or analysis set Batch CAP Capillary Column CCB Continuing Calibration Blank CCV Continuing Calibration Verification CF Confirmation analysis of original C1 Confirmation analysis of Al or D1 C2 Confirmation analysis of A2 or D2 C3 Confirmation analysis of A3 or D3 CRA Low Level Standard Check - GFAA; Mercury CRI Low Level Standard Check - ICP Calilbration Verification Standard CV Dil Fac Dilution Factor - Secondary dilution analysis D1 Dilution 1 D2 Dilution 2 D3 Dilution 3 Detection Limit Factor DLFac DSH Distilled Standard - High Level Distilled Standard - Low Level Distilled Standard - Medium Level DST. DSM EB1 Extraction Blank 1 Extraction Blank 2 EB2 EB3 DI Blank ELC. Method Extracted LCS ET D Method Extracted LCD ICAL Initial calibration ICB Initial Calibration Blank Initial Calibration Verification ICV IDL Instrument Detection Limit ISA Interference Check Sample A - ICAP Interference Check Sample B - ICAP ISB The first six digits of the sample ID which refers to a specific client, project and sample group Job No. Lab ID An 8 number unique laboratory identification LCD Laboratory Control Standard Duplicate LCS Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest MB Method Blank or (PB) Preparation Blank MD Method Duplicate MDL Method Detection Limit MLE Medium Level Extraction Blank MRL Method Reporting Limit Standard Method of Standard Additions MSA MS Matrix Spike MSD Matrix Spike Duplicate ND Not Detected Preparation factor used by the Laboratory's Information Management System (LIMS) PREPF Post Digestion
Spike (ICAP) PDS RA Re-analysis of original A1 Re-analysis of D1 Α2 Re-analysis of D2 A3 Re-analysis of D3 RD Re-extraction of dilution RE Re-extraction of original RC. Re-extraction Confirmation RL Reporting Limit Relative Percent Difference of duplicate (unrounded) analyses RPD Relative Response Factor RRF RT Retention Time ``` # Q U A L I T Y A S S U R A N C E M E T H O D S # REFERENCES AND NOTES Report Date: 12/06/2006 | RTW | Retention Time Window Sample ID A 9 digit number unique for each sample, the first six digits are referred as the job number | |------|--| | SCB | Seeded Control Blank | | SD | Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) | | UCB | Unseeded Control Blank | | SSV | Second Source Verification Standard | | SLCS | Solid Laboratory Control Standard(LCS) | | PHC | pH Calibration Check LCSP pH Laboratory Control Sample | | LCDP | pH Laboratory Control Sample Duplicate | | MDPH | pH Sample Duplicate | | MDFP | Flashpoint Sample Duplicate | | LCFP | Flashpoint LCS | | G1 | Gelex Check Standard Range 0-1 | | G2 | Gelex Check Standard Range 1-10 | | G3 | Gelex Check Standard Range 10-100 | | G4 | Gelex Check Standard Range 100-1000 | | | The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current | | | tion used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) | | | |