

August 4, 2017

Joshua L. Trader
Project Manager | Design & Construction Division
U.S. General Services Administration
2300 Main Street, Kansas City, MO 64108

RE: Goodfellow Federal Center – Bldg. # 106 Drinking Water Sampling Project # 917004.002

Dear Mr. Trader:

Thank you for the opportunity to provide the General Services Administration (GSA) with the subject assessment. The following is our report.

INTRODUCTION

As requested, OCCU-TEC conducted drinking water testing for the presence of lead and copper at Building #106 of the Goodfellow Federal Center located at 4300 Goodfellow Federal Center in St. Louis, Missouri. Sampling was completed in response to the ongoing environmental condition assessment at the Goodfellow Federal Center complex which is documented at the Goodfellow Federal Center Reading Room located at https://www.gsa.gov/portal/content/212361.

Drinking water sampling was conducted to determine the current levels of lead and copper in various representative sources throughout the complex. Drinking water sampling at Bldg. #106 was conducted on June 20, 2017 by Mr. Justin Arnold of OCCUTEC.

METHODOLOGY

The sampling methodology used during this investigation was developed in general accordance with the United States Environmental Protection Agency's (EPA) "Quick Guide to Drinking Water Sample Collection – Second Edition" developed by the EPA Region 8 in September 2016.

Samples were collected as first draw samples in accordance with the Lead and Copper Rule. First draw samples represent 'worst case' conditions with water that has been stationary within the plumbing systems for a minimum of six hours. The samples were collected in individually labeled 1000 milliliter (mL) plastic bottles capped with Teflon septa lined screw caps. The bottles were filled to the shoulder with water from the sample source. The samples were then placed in a cooler for safe transport. Each sample was acidified at the laboratory as needed.

Drinking water sampling for the presence of lead and copper was conducted at two (2) distinct locations within Building #106. A total of three (3) samples were obtained. After each drinking water sample was collected, OCCU-TEC filled a separate sample cup with approximately 2 inches of water. OCCU-TEC placed an Oakton model PHTester30 pH meter into the sample cup. After readings stabilized, OCCU-TEC recorded the readings for pH (the acidity or basicity of an aqueous solution) and the temperature on site specific sample logs.

Drinking water samples were submitted to Eurofins-Eaton Analytical in South Bend, IN for analyses of lead and copper. Eurofins-Eaton Analytical is certified by the State of Missouri Department of Natural Resources (MDNR) as an approved drinking water laboratory. Eurofins-Eaton Analytical's Missouri Certification number is 880.

The drinking water samples were collected using media supplied by Eurofins-Eaton Analytical. Lead and Copper samples were collected and analyzed in accordance with EPA Method 200.8.

RESULTS AND DISCUSSION

The results for the subject testing are summarized in the tables below.

Samples with a "<" sign indicate that the results were below the reportable limit.

Water Sample Summary

Analysis	Lowest Concentration	Highest Concentration	EPA AL*
Lead	<0.001 mg/L	<0.001 mg/L	0.015 mg/L
Copper	0.002 mg/L	0.076 mg/L	1.3 mg/L

^{*}AL – As per EPA Lead and Copper Rule (40 CFR Part 141 Subpart I)

Specific water sample locations are indicated in Appendix A. A summary table of all sampling results by location is included in Appendix B. The complete laboratory report for the drinking water sampling from Eurofins-Eaton Analytical is attached in Appendix C.

LEAD

All samples were below the AL for lead.

COPPER

All samples were below the AL for copper.

PH

Normal pH levels for drinking water are between 6.0 to 8.5. Water with a pH < 6.5 is considered acidic, soft, and corrosive. Acidic water may contain metal ions, may cause premature damage to metal piping, and increases the likelihood of leaching. Water with a pH > 8.5 is considered alkaline or basic and can indicate that the water is hard. Hard water does not pose a health risk, but can cause aesthetic problems. These problems include an alkali taste, the formation of scale deposits, and difficulty in getting soaps and detergents to lather.

Recorded pH levels in Building #106 were 9.45 indicating the drinking water is slightly alkaline.

LIMITATIONS

The scope of this assessment was limited in nature. OCCU-TEC collected samples from a select number of drinking water sources in an effort to provide a general overview of the drinking water quality at the site. Sample locations do not encompass every drinking water source at the Site. Additionally, samples were only analyzed for a select number of potential contaminants likely to affect the drinking water quality at the site. OCCU-TEC is not responsible for potential contaminants not identified in this report.

This report was prepared for the sole use of GSA. Reliance by any party other than GSA is expressly forbidden without OCCU-TEC's written permission. Any parties relying on the report, with OCCU-TEC's written permission, are bound by the terms and conditions outlined in the original proposal as if said proposal was prepared for them.

OCCU-TEC appreciates the opportunity to work with the General Services Administration on this project. Please contact us if you have any questions regarding this report or if we may be of any additional service.

Sincerely,

(b) (6)

Jeff T. Smith Senior Project Manager (b) (6)

Kevin Heriford Project Manager (QA/QC)

ATTACHMENTS

Appendix A, Water Sample Location Diagrams Appendix B, Results Summary by Location Appendix C, Water Sample Laboratory Report

Appendix A Water Sample Location Diagrams

Building 106: Drinking Water Sample Location Map Goodfellow Federal Center 4300 Goodfellow Boulevard St. Louis, MO 63120 Project Number: 917004.002 (b) (7)(F)

Appendix B Results Summary by Location

Goodfellow Federal Center - Building 106										
Sample Number	Location	Water Source	Temperature	рН	Analyte		Result	Units	Above/Below	AL
106-01	Halsey Taylor	Drinking Fountain	17.9	9.45	Copper		0.076	mg/L	Below AL	1.3
100 01	Traisey Taylor	Drinking rountain	17.5	5.45	Lead	<	0.001	mg/L	Below AL	0.015
106-01 D	Duplicate				Copper	1_1	0.088	mg/L	Below AL	1.3
200 02 2	2 apricate				Lead	<	0.001	mg/L	Below AL	0.015
106-02	Mens Restroom	Sink	17.5	9.45	Copper	-	0.002	mg/L	Below AL	1.3
		• • • • • • • • • • • • • • • • • • • •		51.15	Lead	<	0.001	mg/L	Below AL	0.015
								<u></u>		
								-		
								<u>-</u>		
						\perp		-		
								-		
						+				
								 -		
						\vdash				
						-}}		 -		
						\vdash				
								-		
						+		1		
								 		

Highlight indicates results at or above the Action Level (AL)

Appendix C Water Sample Laboratory Report

LABORATORY REPORT

If you have any questions concerning this report, please do not hesitate to call us at $(800)\ 332-4345$ or $(574)\ 233-4777$.

This report may not be reproduced, except in full, without written approval from EEA.

STATE CERTIFICATION LIST

State	Certification	State	Certification
Alabama	40700	Montana	CERT0026
Alaska	IN00035	Nebraska	NE-OS-05-04
Arizona	AZ0432	Nevada	IN00035
Arkansas	IN00035	New Hampshire*	2124
California	2920	New Jersey*	IN598
Colorado	IN035	New Mexico	IN00035
Colorado Radiochemistry	IN035	New York*	11398
Connecticut	PH-0132	North Carolina	18700
Delaware	IN035	North Dakota	R-035
Florida*	E87775	Ohio	87775
Georgia	929	Oklahoma	D9508
Hawaii	IN035	Oregon (Primary AB)*	4074-001
Idaho	IN00035	Pennsylvania*	68-00466
Illinois*	200001	Puerto Rico	IN00035
Illinois Microbiology	17767	Rhode Island	LAO00343
Indiana Chemistry	C-71-01	South Carolina	95005
Indiana Microbiology	M-76-07	South Dakota	IN00035
Iowa	098	Tennessee	TN02973
Kansas*	E-10233	Texas*	T104704187-15-8
Kentucky	90056	Texas/TCEQ	TX207
Louisiana*	LA170006	Utah*	IN00035
Maine	IN00035	Vermont	VT-8775
Maryland	209	Virginia*	460275
Massachusetts	M-IN035	Washington	C837
Michigan	9926	West Virginia	9927 C
Minnesota*	018-999-338	Wisconsin	999766900
Mississippi	IN035	Wyoming	IN035
Missouri	880		

^{*}NELAP/TNI Recognized Accreditation Bodies

Revision date: 05/15/2017

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207

1 800 332 4345

Laboratory Report

Client: OCCU-TEC Inc. Report: 391473

Attn: Kevin Heriford Priority: Standard Written

100 NW Business Park Lane Status: Final

Riverside, MO 64150 PWS ID: Not Supplied

Sample Information									
EEA ID#	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time				
3720315	106-01 Water Fountain	200.8	06/20/17 05:18	Client	06/26/17 09:45				
3720316	106-01-Dup Water Fountain	200.8	06/20/17 05:18	Client	06/26/17 09:45				
3720317	106-02 Mens RR Sink	200.8	06/20/17 05:20	Client	06/26/17 09:45				

Report Summary

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Kelly Trott at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

(b) (6)

Client Name:

07/26/2017

Date

Authorized Signature

OCCU-TEC Inc.

Report #: 391473

Title

Client Name: OCCU-TEC Inc. Report #: 391473

Sampling Point: 106-01 Water Fountain PWS ID: Not Supplied

Lead and Copper									
Analyte ID#	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	EEA ID#
7440-50-8	Copper	200.8	1300 !	1.0	76	ug/L		07/07/17 22:09	3720315
7439-92-1	Lead	200.8	15 !	1.0	< 1.0	ug/L		07/07/17 22:09	3720315

Sampling Point: 106-01-Dup Water Fountain PWS ID: Not Supplied

	Lead and Copper									
Analyte ID #	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	EEA ID#	
7440-50-8	Copper	200.8	1300 !	1.0	88	ug/L		07/07/17 22:16	3720316	
7439-92-1	Lead	200.8	15 !	1.0	< 1.0	ug/L		07/07/17 22:16	3720316	

Sampling Point: 106-02 Mens RR Sink PWS ID: Not Supplied

	Lead and Copper										
Analyte ID#	Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	EEA ID#		
7440-50-8	Copper	200.8	1300 !	1.0	2.0	ug/L		07/07/17 22:18	3720317		
7439-92-1	Lead	200.8	15 !	1.0	< 1.0	ug/L		07/07/17 22:18	3720317		

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	*	۸	!

Client Name: OCCU-TEC Inc. Report #: 391473

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

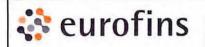
Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / **Laboratory Control Sample (LCS)** - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / **Laboratory Reagent Blank (LRB)** - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / **Field Reagent Blank (FRB)** - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.


Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample aliquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / **Second Source Calibration Verification (SSCV)** - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / **Surrogate Analyte (SUR)** - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

Eaton Analytical

110 S. Hill Street South Bend, IN 46617 T: 1.800.332.4345 F: 1.574.233.8207 Order # 321126

www.EurofinsUS.com/Eaton CHAIN OF CUSTODY RECORD Shaded area for EEA use only PROJECT NAME REPORT TO: SAMPLER (Signature) PWS ID# STATE (sample origin) 917004.02 (b) (6) Occu-Tec DW MO 100 NW Business Park Lane, Riverside, MO 64150 106 TURNAROUND TIME BILL TO: Accounts Recieving POPULATION SERVED SOURCE WATER No # OF CONTAINERS Yes COMPLIANCE 100 NW Business Park Lane, MATRIX CODE MONITORING X DW Riverside, MO 64150 COLLECTION CHLORINATED LAB Number SAMPLING SITE **TEST NAME** SAMPLE REMARKS TIME AM PM NO DATE YES 3720,315 10-20-17 SW 106-01 316 4-10-17 5:18 Sw 317 11-20-17 5:20 SW 100-02 RELINQUISHED BY:(Signature) DATE RECEIVED BY:(Signature) DATE TIME LAB RESERVES THE RIGHT TO RETURN UNUSED PORTIONS OF NON-AQUEOUS SAMPLES TO CLIENT (b) (6) LAB COMMENTS AM PM AM PM RELINQUISHED BY:(Signature) DATE TIME RECEIVED BY:(Signature) DATE RECEIVED FOR LABORATORY BY: RELINQUISHED BY:(Signature) DATE TIME DATE TIME CONDITIONS UPON RECEIPT (check one) (b) (6) Iced: Wet/Blue AM PM MATRIX CODES: TURN-AROUND TIME (TAT) - SURCHARGES IV* = Immediate Verbal: (3 working days) 100% SW = Standard Written: (15 working days) DW-DRINKING WATER RW-REAGENT WATER RV* = Rush Verbal: (5 working days) IW* =Immediate Written: (3 working days) 125% Samples received unannounced with less GW-GROUND WATER than 48 hours holding time remaining may **EW-EXPOSURE WATER** RW* = Rush Written; (5 working days) 75% SP* = Weekend, Holiday CALL be subject to additional charges. SW-SURFACE WATER STAT* = Less than 48 hours CALL PW-POOL WATER WW-WASTE WATER Please call, expedited service not available for all testing 06-LO-F0435 Issue 6.0 Effective Date: 2016-09-20